Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Proceedings in Adaptation, Learning and Optimization ((PALO,volume 1))

Abstract

This paper proposes a new framework, referred to as Recurrent Bayesian Genetic Programming (rbGP), to sustain steady convergence in Genetic Programming (GP) (i.e., to prevent premature convergence) and effectively improves its ability to find superior solutions that generalise well. The term ‘Recurrent’ is borrowed from the taxonomy of Neural Networks (NN), in which a Recurrent NN (RNN) is a special type of network that uses a feedback loop, usually to account for temporal information embedded in the sequence of data points presented to the network. Unlike RNN, our algorithm’s temporal dimension pertains to the sequential nature of the evolutionary process itself, and not to the data sampled from the problem solution space. rbGP introduces an intermediate generation between each subsequent generation in order to collect information about the offspring’s fitness distribution of each parent. Placing the collected information into a Bayesian model, rbGP predicts the probability of any individual to produce offspring fitter than its parent. This predicted probability (calculated by the Bayesian model) is used by the tournament selection instead of the original fitness value. Empirical evidence, from 13 problems, against canonical GP, demonstrates that rbGP preserves generalisation in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Altenberg, L.: The evolution of evolvability in genetic programming. In: Kinnear Jr., K.E. (ed.) Advances in Genetic Programming, ch. 3, pp. 47–74. MIT Press (1994)

    Google Scholar 

  2. Bassett, J.K., Coletti, M., De Jong, K.A.: The relationship between evolvability and bloat. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, GECCO 2009, pp. 1899–1900. ACM, New York (2009)

    Google Scholar 

  3. Ducheyne, E., De Baets, B., De Wulf, R.: Is fitness inheritance useful for real-world applications? In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 31–42. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Ellison, A.M.: Bayesian inference in ecology. Ecology Letters 7(6), 509–520 (2004)

    Article  Google Scholar 

  5. Fakeih, A., Kattan, A.: Recurrent genetic algorithms: Sustaining evolvability. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 230–242. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Google. Google insights (June 2013), http://www.google.com/trends/

  7. Hasegawa, Y., Iba, H.: A Bayesian network approach to program generation. IEEE Transactions on Evolutionary Computation 12(6), 750–764 (2008)

    Article  Google Scholar 

  8. Hu, T.: Evolvability and Rate of Evolution in Evolutionary Computation. PhD thesis, Department of Computer Science, Memorial University of Newfoundland, ST. John’s, Newfoundland, Canada (May 2010)

    Google Scholar 

  9. Hu, T., Banzhaf, W.: Evolvability and speed of evolutionary algorithms in light of recent developments in biology. J. Artif. Evol. App. 2010, 1:1–1:28 (2010)

    Google Scholar 

  10. Murphy, G.P.: Manipulating Convergenc. In: Evolutionary Systems. PhD thesis, University of Limerick, Ireland (May 19, 2009)

    Google Scholar 

  11. Peacock, J.A.: Two-dimensional goodness-of-fit testing in astronomy. Royal Astronomical Society, Monthly Notices 202, 615–627 (1983)

    Article  Google Scholar 

  12. Poli, R., Langdon, W.W.B., McPhee, N.F.: Field Guide to Genetic Programming. Lulu Enterprises Uk Limited (2008)

    Google Scholar 

  13. Smith, R.E., Dike, B.A., Stegmann, S.A.: Fitness inheritance in genetic algorithms. In: Proceedings of the 1995 ACM Symposium on Applied Computing, SAC 1995, pp. 345–350. ACM, New York (1995)

    Chapter  Google Scholar 

  14. Wang, Y., Wineberg, M.: The estimation of evolvability genetic algorithm. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 3, pp. 2302–2309 (September 2005)

    Google Scholar 

  15. Yanai, K., Iba, H.: Estimation of distribution programming based on bayesian network. In: The 2003 Congress on Evolutionary Computation, CEC 2003, vol. 3, pp. 1618–1625 (2003)

    Google Scholar 

  16. Zhang, B.-T.: Bayesian genetic programming. In: Haynes, T., Langdon, W.B., O’Reilly, U.-M., Poli, R., Rosca, J. (eds.) Foundations of Genetic Programming, Orlando, Florida, USA, pp. 68–70 (July 13, 1999)

    Google Scholar 

  17. Zhang, B.-T.: Bayesian methods for efficient genetic programming. Genetic Programming and Evolvable Machines 1(3), 217–242 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Kattan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kattan, A., Ong, YS. (2015). Bayesian Inference to Sustain Evolvability in Genetic Programming. In: Handa, H., Ishibuchi, H., Ong, YS., Tan, K. (eds) Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Volume 1. Proceedings in Adaptation, Learning and Optimization, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-13359-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13359-1_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13358-4

  • Online ISBN: 978-3-319-13359-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics