Nothing Special   »   [go: up one dir, main page]

Skip to main content

Integration of Spatial and Spectral Information by Means of Sparse Representation-Based Classification for Hyperspectral Imagery

  • Conference paper
Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems - Volume 2

Part of the book series: Proceedings in Adaptation, Learning and Optimization ((PALO,volume 2))

Abstract

Recently, sparse representation-based classification (SRC), which assigns a test sample to the class with minimum representation error via a sparse linear combination of all the training samples, has successfully been applied to hyperspectral imagery. Meanwhile, spatial information, that means the adjacent pixels belong to the same class with a high probability, is a valuable complement to the spectral information. In this paper, we have presented a new spatial-neighborhood-integrated SRC method, abbreviated as SN-SRC, to jointly consider the spectral and spatial neighborhood information of each pixel to explore the spectral and spatial coherence by the SRC method. Experimental results have shown that the proposed SN-SRC approach could achieve better performance than the other state-of-the-art methods, especially with limited training samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asif, M.: Primal dual pursuit: a homotopy based algorithm for the Dantzig selector. Master’s thesis, Georgia Institute of Technology (2008)

    Google Scholar 

  2. Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Transactions on Information Theory 51(12), 4203–4215 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chang, C.I.: Hyperspectral imaging: techniques for spectral detection and classification, vol. 1. Springer (2003)

    Google Scholar 

  4. Chen, Y., Nasrabadi, N.M., Tran, T.D.: Classification for hyperspectral imagery based on sparse representation. In: 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp. 1–4. IEEE (2010)

    Google Scholar 

  5. Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification using dictionary-based sparse representation. IEEE Transactions on Geoscience and Remote Sensing 49(10), 3973–3985 (2011)

    Article  Google Scholar 

  6. Donoho, D.L., Tsaig, Y.: Fast solution of-norm minimization problems when the solution may be sparse. IEEE Transactions on Information Theory 54(11), 4789–4812 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Haq, Q.S.u., Tao, L., Sun, F., Yang, S.: A fast and robust sparse approach for hyperspectral data classification using a few labeled samples. IEEE Transactions on Geoscience and Remote Sensing 50(6), 2287–2302 (2012)

    Article  Google Scholar 

  8. ul Haq, Q.S., Shi, L., Tao, L., Yang, S.: Hyperspectral data classification via sparse representation in homotopy. In: 2010 2nd International Conference on Information Science and Engineering (ICISE), pp. 3748–3752. IEEE (2010)

    Google Scholar 

  9. Krishnapuram, B., Carin, L., Figueiredo, M.A., Hartemink, A.J.: Sparse multinomial logistic regression: Fast algorithms and generalization bounds. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(6), 957–968 (2005)

    Article  Google Scholar 

  10. Landgrebe, D.: Hyperspectral image data analysis. IEEE Signal Processing Magazine 19(1), 17–28 (2002)

    Article  Google Scholar 

  11. Lee, M.A., Prasad, S., Bruce, L.M., West, T.R., Reynolds, D., Irby, T., Kalluri, H.: Sensitivity of hyperspectral classification algorithms to training sample size. In: First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2009, pp. 1–4. IEEE (2009)

    Google Scholar 

  12. Li, J., Bioucas-Dias, J.M., Plaza, A.: Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields. IEEE Transactions on Geoscience and Remote Sensing 50(3), 809–823 (2012)

    Article  Google Scholar 

  13. Lu, D., Weng, Q.: A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing 28(5), 823–870 (2007)

    Article  Google Scholar 

  14. Manolakis, D., Marden, D., Shaw, G.A.: Hyperspectral image processing for automatic target detection applications. Lincoln Laboratory Journal 14(1), 79–116 (2003)

    Google Scholar 

  15. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM Journal on Computing 24(2), 227–234 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., et al.: Recent advances in techniques for hyperspectral image processing. Remote Sensing of Environment 113, S110–S122 (2009)

    Article  Google Scholar 

  17. Prasad, S., Bruce, L.M.: Overcoming the small sample size problem in hyperspectral classification and detection tasks. In: IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2008, vol. 5, p. V-381. IEEE (2008)

    Google Scholar 

  18. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2), 210–227 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jia, S., Xie, Y., Zhu, Z. (2015). Integration of Spatial and Spectral Information by Means of Sparse Representation-Based Classification for Hyperspectral Imagery. In: Handa, H., Ishibuchi, H., Ong, YS., Tan, KC. (eds) Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems - Volume 2. Proceedings in Adaptation, Learning and Optimization, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-13356-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13356-0_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13355-3

  • Online ISBN: 978-3-319-13356-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics