Abstract
Feature extraction is the most critical part of biometric authentication systems. The majority of biometric systems proposed in the last years are using alignment to ensure robust authentication in the presence of affine transformations like rotation and translation. Nevertheless, alignment is time consuming, and misalignment leads to the lack of accuracy. Using template-protection, there is a need for additional information to perform explicit alignment. It is therefore not clear whether this information could be used to attack the protected biometric template. This Chapter presents a comparative view on alignment-free features for biometric authentication from the perspective of pattern recognition and digital image processing as well as biometrics. The basics of these disciplines are aggregated and different proposed techniques are described, assessed and compared. Finally, an evaluation strategy from the field of digital image processing is applied to biometrics in order to assess robustness and invariance of feature extraction in biometrics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wood J. Invariant pattern recognition: a review. Pattern Recognit. 1996;29(1):1–17.
Steger C, Ulrich M, Weidemann C. Machine vision algorithms and applications. Weinheim: Wiley-VCH 2008.
Theodoridis S, Koutroumbas K. Pattern recognition. 4th ed. Amsterdam: Elsevier Academic Press; 2008.
Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;3:1157–82.
Nixon M, Aguado AS. Feature extraction & image processing. Amsterdam: Elsevier Academic Press; 2008.
Bishop CM. Neural networks for pattern recognition. Oxford University Press; 1995.
Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–97.
Bishop CM, et al. Pattern recognition and machine learning. vol. 1. New York: Springer; 2006.
Prokop RJ, Reeves AP. A survey of moment-based techniques for unoccluded object representation and recognition. CVGIP: Graph Models Image Process. 1992;54(5):438–60.
Teague MR. Image analysis via the general theory of moments*. JOSA. 1980;70(8):920–30.
Mercimek M, Gulez K, Mumcu TV. Real object recognition using moment invariants. Sadhana. 2005;30(6):765–75.
Hu MK. Visual pattern recognition by moment invariants. IRE Trans Inf Theory. 1962;8(2):179–87.
Yang J. Biometrics. Non-minutiae based fingerprint descriptor, chapter 4. InTech, June 2011.
Teh C-H, Chin RT. On image analysis by the methods of moments. IEEE Trans Pattern Anal Mach Intell. 1988;10(4):496–513.
Khotanzad A, Hong YH. Invariant image recognition by zernike moments. IEEE Trans Pattern Anal Mach Intell. 1990;12(5):489–97.
Schmid C, Mohr R. Local grayvalue invariants for image retrieval. IEEE Trans Pattern Anal Mach Intell. 1997;19(5):530–5.
Tuytelaars T, Mikolajczyk K. Local invariant feature detectors: a survey. Found Trend® Comput Graph Vis. 2008;3(3):177–280.
Mikolajczyk K, Schmid C. Scale & affine invariant interest point detectors. Int J Comput Vis. 2004;60(1):63–86.
Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell. 2005;27(10):1615–30.
Jain AK, Ross A, Prabhakar S. An introduction to biometric recognition. IEEE Trans Circuit Syst Video Technol. 2004;14(1):4–20.
Maltoni D, Maio D, Jain AK, Prabhakar S. Handbook of fingerprint recognition. London: Springer; 2009.
Jain AK, Flynn P, Ross AA. Handbook of biometrics. London: Springer; 2010.
Bundesamt für Sicherheit in der Informationstechnik (BSI). BioKeyS Pilot-DB Teil 2 (Projekt Template Protection), Abschlussbericht. 2011. https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/BioKeys/BioKeyS-Abschlussbericht.pdf?__blob=publicationFile. Accessed 15 April 2014.
International Organization for Standardization and International Electrotechnical Commission. ISO/IEC 19794.
Lee C, Choi JY, Toh KA, Lee S. Alignment-free cancelable fingerprint templates based on local minutiae information. IEEE Trans Syst Man Cybern Part B: Cybern. 2007;37(4):980–92.
Rathgeb C, Uhl A. A survey on biometric cryptosystems and cancelable biometrics. EURASIP J Inf Secur. 2011;2011(1):1–25.
Juels A, Sudan M. A fuzzy vault scheme. Des Code Cryptogr. 2006;38(2):237–57.
Bundesamt für Sicherheit in der Informationstechnik (BSI). Fingerabdruckerkennung. 2013. URL. Accessed 28 Nov 2013.
Henry ER. Classification and uses of finger prints. Routledge; 1900.
ANSI/NIST. ANSI/NIST-ITL-1-2011. 2011. URL.Accessed 2 Dec 2013.
Jain AK, Chen Y, Demirkus M. Pores and ridges: high-resolution fingerprint matching using level 3 features. IEEE Trans Pattern Anal Mach Intell. 2007;29(1):15–27.
Park U, Pankanti S, Jain AK. Fingerprint verification using sift features. In: SPIE. 2008; vol. 6944, pp. 69440K.
Pang S, Yin Y, Yang G, Li Y. Rotation invariant finger vein recognition. In: Biometric recognition, pp. 151–6. Springer; 2012.
He S, Zhang C, Hao P. Comparative study of features for fingerprint indexing. In: 16th IEEE International Conference on Image Processing (ICIP). 2009; pp. 2749–52.
Fay R. An analysis of alignment-free feature-extraction methods for fingerprint and vein biometrics. Master’s thesis, University of Siegen; 2014.
Miura N, Nagasaka A, Miyatake T. Extraction of finger-vein patterns using maximum curvature points in image profiles. IEICE Trans Inf Syst. 2007;90(8):1185–94.
Miura N, Nagasaka A, Miyatake T. Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification. Mach Vis Appl. 2004;15(4):194–203.
Miura BT, et al. Vein extraction methods. 2012. http://www.mathworks.com/matlabcentral/fileexchange/35716-miura-et-al-vein-extraction-methods, Accessed 6 Dec 2013.
Hartung D. Vascular pattern recognition: and its application in privacy-preserving biometric online-banking systems. PhD thesis, Gjøvik University College; 2012.
Xueyan L, Shuxu G. The fourth biometric-vein recognition, pattern recognition techniques, technology and applications. InTech, 2008.
Xueyan L, Shuxu G, Fengli G, Ye L. Vein pattern recognitions by moment invariants. In the 1st International Conference on Bioinformatics and Biomedical Engineering, ICBBE. 2007; pp. 612–5.
Hartung D. Venenbilderkennung. Datenschutz und Datensicherheit—DuD. 2009;33(5):275–9.
Hartung D, Tistarelli M, Busch C. Vein minutia cylinder-codes (v-mcc). In International Conference on Biometrics (ICB). 2013; pp. 1–7.
Hartung D, Olsen MA, Xu H, Busch C. Spectral minutiae for vein pattern recognition. In International Joint Conference on Biometrics (IJCB). 2011; pp. 1–7.
Bansal R, Sehgal P, Bedi P. Minutiae extraction from fingerprint images-a review. arXiv preprint arXiv:1201.1422, 2011.
Maio D, Maltoni D. Direct gray-scale minutiae detection in fingerprints. IEEE Trans Pattern Anal Mach Intell. 1997;19(1):27–40.
Athi. Fingerprint Minutiae Extraction: 2011. http://www.mathworks.com/matlabcentral/fileexchange/31926-fingerprint-minutiae-extraction. Accessed 3 Jan 2014.
Sagar VK, Alex KJB. Hybrid fuzzy logic and neural network model for fingerprint minutiae extraction. In International Joint Conference on Neural Networks, IJCNN. 1999; vol. 5, pp. 3255–9.
Schmid C, Mohr R, Bauckhage C. Evaluation of interest point detectors. Int J Comput Vis. 2000;37(2):151–72.
Harris C, Stephens M. A combined corner and edge detector. In: Alvey vision conference. Manchester, UK. 1988; vol. 15, pp. 50.
Rosten E, Porter R, Drummond T. Faster and better: a machine learning approach to corner detection. IEEE Trans Pattern Anal Mach Intell. 2010;32(1):105–19.
Mair E, Hager GD, Burschka D, Suppa M, Hirzinger G. Adaptive and generic corner detection based on the accelerated segment test. In Proceedings of the European Conference on Computer Vision (ECCV'10), September 2010.
Rublee E, Rabaud V, Konolige K, Bradski G. Orb: an efficient alternative to sift or surf. In IEEE International Conference on Computer Vision (ICCV). 2011; pp. 2564–71.
Li J, Allinson NM. A comprehensive review of current local features for computer vision. Neurocomputing. 2008;71(10):1771–87.
Lowe DG. Object recognition from local scale-invariant features. In: The proceedings of the seventh IEEE International Conference on Computer vision. 1999; vol. 2, pp. 1150–7.
Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2004;60(2):91–110.
Lindeberg T. Scale-space theory in computer vision. Dordrecht: Springer; 1993.
Bay H, Tuytelaars T, Van Gool L. Surf: speeded up robust features. In Computer Vision–ECCV 2006, pp. 404–17. Springer; 2006.
Matas J, Chum O, Urban M, Pajdla T. Robust wide-baseline stereo from maximally stable extremal regions. Image Vis Comput. 2004;22(10):761–7.
Dalal N, Triggs B. Histograms of oriented gradients for human detection. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2005; vol. 1, pp. 886–93.
Jin L, Zhang TX. The generalization of moment invariants. Chin J Comput. 2004;5:011.
Deepika CL, Kandaswamy A, Vimal C, Sathish B. Invariant feature extraction from fingerprint biometric using pseudo Zernike moments. In Proceedings of the International Joint Journal Conference on Engineering and Technology. 2010; pp. 104–8.
Yang JC, Park DS. Fingerprint verification based on invariant moment features and nonlinear BPNN. Int J Control Autom Syst. 2008;6(6):800–8.
Chikkerur S, Cartwright AN, Govindaraju V. Fingerprint enhancement using STFT analysis. Pattern Recognit. 2007;40(1):198–211.
Hong L, Wan Y, Jain A. Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans Pattern Anal Mach Intell. 1998;20(8):777–89.
Maio D, Maltoni D, Cappelli R, Wayman JL, Jain AK. Fvc2002: second fingerprint verification competition. In Proceedings 16th International Conference on Pattern Recognition. 2002; vol. 3, pp. 811–4.
Jain A, Nandakumar K, Ross A. Score normalization in multimodal biometric systems. Pattern recognition. 2005;38(12):2270–85.
Shuai X, Zhang C, Hao P. Fingerprint indexing based on composite set of reduced sift features. In 19th International Conference on Pattern Recognition. ICPR 2008; pp. 1–4.
Gionis A, Indyk P, Motwani R, et al. Similarity search in high dimensions via hashing. In VLDB. 1999; vol. 99, pp. 518–29.
Rosdi BA, Shing CW, Suandi SA. Finger vein recognition using local line binary pattern. Sensors. 2011;11(12):11357–71.
Rosten E, Drummond T. Machine learning for high-speed corner detection. In Computer Vision–ECCV 2006. Springer, 2006; pp. 430–43.
Chikkerur S, Cartwright AN, Govindaraju V. K-plet and coupled bfs: a graph based fingerprint representation and matching algorithm. In: Zhang D, Jain AK, editors. Advances in Biometrics, volume 3832 of Lecture Notes in Computer Science. 2005; pp. 309–15. Springer Berlin Heidelberg.
Cappelli R, Ferrara M, Maltoni D. Minutia cylinder-code: a new representation and matching technique for fingerprint recognition. IEEE Trans Pattern Anal Mach Intell. 2010;32(12):2128–41.
Cappelli R, Ferrara M, Franco A, Maltoni D. Fingerprint verification competition 2006. Biom Technol Today. 2007;15(7):7–9.
Cappelli R, Ferrara M, Maltoni D, Tistarelli M. Mcc: a baseline algorithm for fingerprint verification in fvc-ongoing. 11th International Conference on Control Automation Robotics Vision (ICARCV). 2010; pp. 19–23.
Ferrara M, Maltoni D, Cappelli R. Noninvertible minutia cylinder-code representation. IEEE Trans Inf Forensic Secur. 2012;7(6):1727–37.
Cappelli R, Ferrara M, Maltoni D. Fingerprint indexing based on minutia cylinder-code. IEEE Trans Pattern Anal Mach Intell. 2011;33(5):1051–7.
Xu H, Veldhuis RNJ, Kevenaar TAM, Akkermans TAHM, Bazen AM. Spectral minutiae: a fixed-length representation of a minutiae set. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. June 2008; pp. 1–6.
Xu H, Veldhuis RNJ, Bazen AM, Kevenaar TAM, Akkermans TAHM, Gokberk B. Fingerprint verification using spectral minutiae representations. IEEE Trans Inf Forensic Secur. 2009;4(3):397–409.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Fay, R., Ruland, C. (2015). Robustness of Biometrics by Image Processing Technology. In: Živić, N. (eds) Robust Image Authentication in the Presence of Noise. Springer, Cham. https://doi.org/10.1007/978-3-319-13156-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-13156-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-13155-9
Online ISBN: 978-3-319-13156-6
eBook Packages: EngineeringEngineering (R0)