Nothing Special   »   [go: up one dir, main page]

Skip to main content

Robustness of Biometrics by Image Processing Technology

  • Chapter
  • First Online:
Robust Image Authentication in the Presence of Noise
  • 507 Accesses

Abstract

Feature extraction is the most critical part of biometric authentication systems. The majority of biometric systems proposed in the last years are using alignment to ensure robust authentication in the presence of affine transformations like rotation and translation. Nevertheless, alignment is time consuming, and misalignment leads to the lack of accuracy. Using template-protection, there is a need for additional information to perform explicit alignment. It is therefore not clear whether this information could be used to attack the protected biometric template. This Chapter presents a comparative view on alignment-free features for biometric authentication from the perspective of pattern recognition and digital image processing as well as biometrics. The basics of these disciplines are aggregated and different proposed techniques are described, assessed and compared. Finally, an evaluation strategy from the field of digital image processing is applied to biometrics in order to assess robustness and invariance of feature extraction in biometrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wood J. Invariant pattern recognition: a review. Pattern Recognit. 1996;29(1):1–17.

    Google Scholar 

  2. Steger C, Ulrich M, Weidemann C. Machine vision algorithms and applications. Weinheim: Wiley-VCH 2008.

    Google Scholar 

  3. Theodoridis S, Koutroumbas K. Pattern recognition. 4th ed. Amsterdam: Elsevier Academic Press; 2008.

    Google Scholar 

  4. Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;3:1157–82.

    Google Scholar 

  5. Nixon M, Aguado AS. Feature extraction & image processing. Amsterdam: Elsevier Academic Press; 2008.

    Google Scholar 

  6. Bishop CM. Neural networks for pattern recognition. Oxford University Press; 1995.

    Google Scholar 

  7. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–97.

    Google Scholar 

  8. Bishop CM, et al. Pattern recognition and machine learning. vol. 1. New York: Springer; 2006.

    Google Scholar 

  9. Prokop RJ, Reeves AP. A survey of moment-based techniques for unoccluded object representation and recognition. CVGIP: Graph Models Image Process. 1992;54(5):438–60.

    Google Scholar 

  10. Teague MR. Image analysis via the general theory of moments*. JOSA. 1980;70(8):920–30.

    Google Scholar 

  11. Mercimek M, Gulez K, Mumcu TV. Real object recognition using moment invariants. Sadhana. 2005;30(6):765–75.

    Google Scholar 

  12. Hu MK. Visual pattern recognition by moment invariants. IRE Trans Inf Theory. 1962;8(2):179–87.

    Google Scholar 

  13. Yang J. Biometrics. Non-minutiae based fingerprint descriptor, chapter 4. InTech, June 2011.

    Google Scholar 

  14. Teh C-H, Chin RT. On image analysis by the methods of moments. IEEE Trans Pattern Anal Mach Intell. 1988;10(4):496–513.

    Google Scholar 

  15. Khotanzad A, Hong YH. Invariant image recognition by zernike moments. IEEE Trans Pattern Anal Mach Intell. 1990;12(5):489–97.

    Google Scholar 

  16. Schmid C, Mohr R. Local grayvalue invariants for image retrieval. IEEE Trans Pattern Anal Mach Intell. 1997;19(5):530–5.

    Google Scholar 

  17. Tuytelaars T, Mikolajczyk K. Local invariant feature detectors: a survey. Found Trend® Comput Graph Vis. 2008;3(3):177–280.

    Google Scholar 

  18. Mikolajczyk K, Schmid C. Scale & affine invariant interest point detectors. Int J Comput Vis. 2004;60(1):63–86.

    Google Scholar 

  19. Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell. 2005;27(10):1615–30.

    Google Scholar 

  20. Jain AK, Ross A, Prabhakar S. An introduction to biometric recognition. IEEE Trans Circuit Syst Video Technol. 2004;14(1):4–20.

    Google Scholar 

  21. Maltoni D, Maio D, Jain AK, Prabhakar S. Handbook of fingerprint recognition. London: Springer; 2009.

    Google Scholar 

  22. Jain AK, Flynn P, Ross AA. Handbook of biometrics. London: Springer; 2010.

    Google Scholar 

  23. Bundesamt für Sicherheit in der Informationstechnik (BSI). BioKeyS Pilot-DB Teil 2 (Projekt Template Protection), Abschlussbericht. 2011. https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/BioKeys/BioKeyS-Abschlussbericht.pdf?__blob=publicationFile. Accessed 15 April 2014.

  24. International Organization for Standardization and International Electrotechnical Commission. ISO/IEC 19794.

    Google Scholar 

  25. Lee C, Choi JY, Toh KA, Lee S. Alignment-free cancelable fingerprint templates based on local minutiae information. IEEE Trans Syst Man Cybern Part B: Cybern. 2007;37(4):980–92.

    Google Scholar 

  26. Rathgeb C, Uhl A. A survey on biometric cryptosystems and cancelable biometrics. EURASIP J Inf Secur. 2011;2011(1):1–25.

    Google Scholar 

  27. Juels A, Sudan M. A fuzzy vault scheme. Des Code Cryptogr. 2006;38(2):237–57.

    Google Scholar 

  28. Bundesamt für Sicherheit in der Informationstechnik (BSI). Fingerabdruckerkennung. 2013. URL. Accessed 28 Nov 2013.

    Google Scholar 

  29. Henry ER. Classification and uses of finger prints. Routledge; 1900.

    Google Scholar 

  30. ANSI/NIST. ANSI/NIST-ITL-1-2011. 2011. URL.Accessed 2 Dec 2013.

    Google Scholar 

  31. Jain AK, Chen Y, Demirkus M. Pores and ridges: high-resolution fingerprint matching using level 3 features. IEEE Trans Pattern Anal Mach Intell. 2007;29(1):15–27.

    Google Scholar 

  32. Park U, Pankanti S, Jain AK. Fingerprint verification using sift features. In: SPIE. 2008; vol. 6944, pp. 69440K.

    Google Scholar 

  33. Pang S, Yin Y, Yang G, Li Y. Rotation invariant finger vein recognition. In: Biometric recognition, pp. 151–6. Springer; 2012.

    Google Scholar 

  34. He S, Zhang C, Hao P. Comparative study of features for fingerprint indexing. In: 16th IEEE International Conference on Image Processing (ICIP). 2009; pp. 2749–52.

    Google Scholar 

  35. Fay R. An analysis of alignment-free feature-extraction methods for fingerprint and vein biometrics. Master’s thesis, University of Siegen; 2014.

    Google Scholar 

  36. Miura N, Nagasaka A, Miyatake T. Extraction of finger-vein patterns using maximum curvature points in image profiles. IEICE Trans Inf Syst. 2007;90(8):1185–94.

    Google Scholar 

  37. Miura N, Nagasaka A, Miyatake T. Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification. Mach Vis Appl. 2004;15(4):194–203.

    Google Scholar 

  38. Miura BT, et al. Vein extraction methods. 2012. http://www.mathworks.com/matlabcentral/fileexchange/35716-miura-et-al-vein-extraction-methods, Accessed 6 Dec 2013.

  39. Hartung D. Vascular pattern recognition: and its application in privacy-preserving biometric online-banking systems. PhD thesis, Gjøvik University College; 2012.

    Google Scholar 

  40. Xueyan L, Shuxu G. The fourth biometric-vein recognition, pattern recognition techniques, technology and applications. InTech, 2008.

    Google Scholar 

  41. Xueyan L, Shuxu G, Fengli G, Ye L. Vein pattern recognitions by moment invariants. In the 1st International Conference on Bioinformatics and Biomedical Engineering, ICBBE. 2007; pp. 612–5.

    Google Scholar 

  42. Hartung D. Venenbilderkennung. Datenschutz und Datensicherheit—DuD. 2009;33(5):275–9.

    Google Scholar 

  43. Hartung D, Tistarelli M, Busch C. Vein minutia cylinder-codes (v-mcc). In International Conference on Biometrics (ICB). 2013; pp. 1–7.

    Google Scholar 

  44. Hartung D, Olsen MA, Xu H, Busch C. Spectral minutiae for vein pattern recognition. In International Joint Conference on Biometrics (IJCB). 2011; pp. 1–7.

    Google Scholar 

  45. Bansal R, Sehgal P, Bedi P. Minutiae extraction from fingerprint images-a review. arXiv preprint arXiv:1201.1422, 2011.

    Google Scholar 

  46. Maio D, Maltoni D. Direct gray-scale minutiae detection in fingerprints. IEEE Trans Pattern Anal Mach Intell. 1997;19(1):27–40.

    Google Scholar 

  47. Athi. Fingerprint Minutiae Extraction: 2011. http://www.mathworks.com/matlabcentral/fileexchange/31926-fingerprint-minutiae-extraction. Accessed 3 Jan 2014.

  48. Sagar VK, Alex KJB. Hybrid fuzzy logic and neural network model for fingerprint minutiae extraction. In International Joint Conference on Neural Networks, IJCNN. 1999; vol. 5, pp. 3255–9.

    Google Scholar 

  49. Schmid C, Mohr R, Bauckhage C. Evaluation of interest point detectors. Int J Comput Vis. 2000;37(2):151–72.

    Google Scholar 

  50. Harris C, Stephens M. A combined corner and edge detector. In: Alvey vision conference. Manchester, UK. 1988; vol. 15, pp. 50.

    Google Scholar 

  51. Rosten E, Porter R, Drummond T. Faster and better: a machine learning approach to corner detection. IEEE Trans Pattern Anal Mach Intell. 2010;32(1):105–19.

    Google Scholar 

  52. Mair E, Hager GD, Burschka D, Suppa M, Hirzinger G. Adaptive and generic corner detection based on the accelerated segment test. In Proceedings of the European Conference on Computer Vision (ECCV'10), September 2010.

    Google Scholar 

  53. Rublee E, Rabaud V, Konolige K, Bradski G. Orb: an efficient alternative to sift or surf. In IEEE International Conference on Computer Vision (ICCV). 2011; pp. 2564–71.

    Google Scholar 

  54. Li J, Allinson NM. A comprehensive review of current local features for computer vision. Neurocomputing. 2008;71(10):1771–87.

    Google Scholar 

  55. Lowe DG. Object recognition from local scale-invariant features. In: The proceedings of the seventh IEEE International Conference on Computer vision. 1999; vol. 2, pp. 1150–7.

    Google Scholar 

  56. Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2004;60(2):91–110.

    Google Scholar 

  57. Lindeberg T. Scale-space theory in computer vision. Dordrecht: Springer; 1993.

    Google Scholar 

  58. Bay H, Tuytelaars T, Van Gool L. Surf: speeded up robust features. In Computer Vision–ECCV 2006, pp. 404–17. Springer; 2006.

    Google Scholar 

  59. Matas J, Chum O, Urban M, Pajdla T. Robust wide-baseline stereo from maximally stable extremal regions. Image Vis Comput. 2004;22(10):761–7.

    Google Scholar 

  60. Dalal N, Triggs B. Histograms of oriented gradients for human detection. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2005; vol. 1, pp. 886–93.

    Google Scholar 

  61. Jin L, Zhang TX. The generalization of moment invariants. Chin J Comput. 2004;5:011.

    Google Scholar 

  62. Deepika CL, Kandaswamy A, Vimal C, Sathish B. Invariant feature extraction from fingerprint biometric using pseudo Zernike moments. In Proceedings of the International Joint Journal Conference on Engineering and Technology. 2010; pp. 104–8.

    Google Scholar 

  63. Yang JC, Park DS. Fingerprint verification based on invariant moment features and nonlinear BPNN. Int J Control Autom Syst. 2008;6(6):800–8.

    Google Scholar 

  64. Chikkerur S, Cartwright AN, Govindaraju V. Fingerprint enhancement using STFT analysis. Pattern Recognit. 2007;40(1):198–211.

    Google Scholar 

  65. Hong L, Wan Y, Jain A. Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans Pattern Anal Mach Intell. 1998;20(8):777–89.

    Google Scholar 

  66. Maio D, Maltoni D, Cappelli R, Wayman JL, Jain AK. Fvc2002: second fingerprint verification competition. In Proceedings 16th International Conference on Pattern Recognition. 2002; vol. 3, pp. 811–4.

    Google Scholar 

  67. Jain A, Nandakumar K, Ross A. Score normalization in multimodal biometric systems. Pattern recognition. 2005;38(12):2270–85.

    Google Scholar 

  68. Shuai X, Zhang C, Hao P. Fingerprint indexing based on composite set of reduced sift features. In 19th International Conference on Pattern Recognition. ICPR 2008; pp. 1–4.

    Google Scholar 

  69. Gionis A, Indyk P, Motwani R, et al. Similarity search in high dimensions via hashing. In VLDB. 1999; vol. 99, pp. 518–29.

    Google Scholar 

  70. Rosdi BA, Shing CW, Suandi SA. Finger vein recognition using local line binary pattern. Sensors. 2011;11(12):11357–71.

    Google Scholar 

  71. Rosten E, Drummond T. Machine learning for high-speed corner detection. In Computer Vision–ECCV 2006. Springer, 2006; pp. 430–43.

    Google Scholar 

  72. Chikkerur S, Cartwright AN, Govindaraju V. K-plet and coupled bfs: a graph based fingerprint representation and matching algorithm. In: Zhang D, Jain AK, editors. Advances in Biometrics, volume 3832 of Lecture Notes in Computer Science. 2005; pp. 309–15. Springer Berlin Heidelberg.

    Google Scholar 

  73. Cappelli R, Ferrara M, Maltoni D. Minutia cylinder-code: a new representation and matching technique for fingerprint recognition. IEEE Trans Pattern Anal Mach Intell. 2010;32(12):2128–41.

    Google Scholar 

  74. Cappelli R, Ferrara M, Franco A, Maltoni D. Fingerprint verification competition 2006. Biom Technol Today. 2007;15(7):7–9.

    Google Scholar 

  75. Cappelli R, Ferrara M, Maltoni D, Tistarelli M. Mcc: a baseline algorithm for fingerprint verification in fvc-ongoing. 11th International Conference on Control Automation Robotics Vision (ICARCV). 2010; pp. 19–23.

    Google Scholar 

  76. Ferrara M, Maltoni D, Cappelli R. Noninvertible minutia cylinder-code representation. IEEE Trans Inf Forensic Secur. 2012;7(6):1727–37.

    Google Scholar 

  77. Cappelli R, Ferrara M, Maltoni D. Fingerprint indexing based on minutia cylinder-code. IEEE Trans Pattern Anal Mach Intell. 2011;33(5):1051–7.

    Google Scholar 

  78. Xu H, Veldhuis RNJ, Kevenaar TAM, Akkermans TAHM, Bazen AM. Spectral minutiae: a fixed-length representation of a minutiae set. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. June 2008; pp. 1–6.

    Google Scholar 

  79. Xu H, Veldhuis RNJ, Bazen AM, Kevenaar TAM, Akkermans TAHM, Gokberk B. Fingerprint verification using spectral minutiae representations. IEEE Trans Inf Forensic Secur. 2009;4(3):397–409.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Fay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fay, R., Ruland, C. (2015). Robustness of Biometrics by Image Processing Technology. In: Živić, N. (eds) Robust Image Authentication in the Presence of Noise. Springer, Cham. https://doi.org/10.1007/978-3-319-13156-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13156-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13155-9

  • Online ISBN: 978-3-319-13156-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics