Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Formalized Proof of Strong Normalization for Guarded Recursive Types

  • Conference paper
Programming Languages and Systems (APLAS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8858))

Included in the following conference series:

  • 954 Accesses

Abstract

We consider a simplified version of Nakano’s guarded fixed-point types in a representation by infinite type expressions, defined coinductively. Smallstep reduction is parametrized by a natural number “depth” that expresses under how many guards we may step during evaluation. We prove that reduction is strongly normalizing for any depth. The proof involves a typed inductive notion of strong normalization and a Kripke model of types in two dimensions: depth and typing context. Our results have been formalized in Agda and serve as a case study of reasoning about a language with coinductive type expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agda Wiki. Chalmers and Gothenburg University, 2.4 edn. (2014), http://wiki.portal.chalmers.se/agda

  • Abel, A.: Normalization for the simply-typed lambda-calculus in Twelf. In: Logical Frameworks and Metalanguages (LFM 2004). Electronic Notes in Theoretical Computer Science, vol. 199C, pp. 3–16. Elsevier (2008)

    Google Scholar 

  • Abel, A., Pientka, B., Thibodeau, D., Setzer, A.: Copatterns: Programming infinite structures by observations. In: The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2013, Rome, Italy, January 23-25, pp. 27–38. ACM Press (2013)

    Google Scholar 

  • Abel, A., Vezzosi, A.: A formalized proof of strong normalization for guarded recursive types (long version and Agda sources) (August 2014), http://www.cse.chalmers.se/~abela/publications.html#aplas14

  • Altenkirch, T., McBride, C., Swierstra, W.: Observational equality, now! In: Proceedings of the ACM Workshop Programming Languages meets Program Verification, PLPV 2007, Freiburg, Germany, October 5, pp. 57–68. ACM Press (2007)

    Google Scholar 

  • Altenkirch, T., Reus, B.: Monadic presentations of lambda terms using generalized inductive types. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 453–468. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  • Atkey, R., McBride, C.: Productive coprogramming with guarded recursion. In: Proc. of the 18th ACM SIGPLAN Int. Conf. on Functional Programming, ICFP 2013, pp. 197–208. ACM Press (2013)

    Google Scholar 

  • Benton, N., Hur, C.K., Kennedy, A., McBride, C.: Strongly typed term representations in Coq. Journal of Automated Reasoning 49(2), 141–159 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Birkedal, L., Møgelberg, R.E.: Intensional type theory with guarded recursive types qua fixed points on universes. In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, pp. 213–222. IEEE Computer Society Press (2013)

    Google Scholar 

  • Dybjer, P.: Inductive families. Formal Aspects of Computing 6(4), 440–465 (1994)

    Article  MATH  Google Scholar 

  • Joachimski, F., Matthes, R.: Short proofs of normalization. Archive of Mathematical Logic 42(1), 59–87 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Krishnaswami, N.R., Benton, N.: A semantic model for graphical user interfaces. In: Proceeding of the 16th ACM SIGPLAN International Conference on Functional Programming, ICFP 2011, Tokyo, Japan, September 19-21, pp. 45–57. ACM Press (2011a)

    Google Scholar 

  • Krishnaswami, N.R., Benton, N.: Ultrametric semantics of reactive programs. In: Proceedings of the 26th Annual IEEE Symposium on Logic in Computer Science, LICS 2011, Toronto, Ontario, Canada, June 21-24, pp. 257–266. IEEE Computer Society Press (2011b)

    Google Scholar 

  • McBride, C.: Type-preserving renaming and substitution, unpublished draft (2006), http://strictlypositive.org/ren-sub.pdf

  • McBride, C.: Let’s see how things unfold: Reconciling the infinite with the intensional (Extended abstract). In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 113–126. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  • McBride, C.: Outrageous but meaningful coincidences: Dependent type-safe syntax and evaluation. In: Proceedings of the ACM SIGPLAN Workshop on Generic Programming, WGP 2010, Baltimore, MD, USA, September 27-29, pp. 1–12. ACM Press (2010)

    Google Scholar 

  • Nakano, H.: A modality for recursion. In: Proceedings of the 15th Annual IEEE Symposium on Logic in Computer Science (LICS 2000), Santa Barbara, California, USA, June 26-29, pp. 255–266. IEEE Computer Society Press (2000)

    Google Scholar 

  • van Raamsdonk, F., Severi, P., Sørensen, M.H., Xi, H.: Perpetual reductions in lambda calculus. Information and Computation 149(2), 173–225 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Tait, W.W.: Intensional interpretations of functionals of finite type I. The Journal of Symbolic Logic 32(2), 198–212 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  • Univalent Foundations: Homotopy type theory: Univalent foundations of mathematics. Tech. rep. Institute for Advanced Study (2013), http://homotopytypetheory.org/book/

  • Xi, H., Chen, C., Chen, G.: Guarded recursive datatype constructors. In: Proceedings of the 30th ACM SIGPLAN Symposium on Principles of Programming Languages, New Orleans, pp. 224–235 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Abel, A., Vezzosi, A. (2014). A Formalized Proof of Strong Normalization for Guarded Recursive Types. In: Garrigue, J. (eds) Programming Languages and Systems. APLAS 2014. Lecture Notes in Computer Science, vol 8858. Springer, Cham. https://doi.org/10.1007/978-3-319-12736-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12736-1_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12735-4

  • Online ISBN: 978-3-319-12736-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics