Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Parallel C++ Statistical Library for Bayesian Inference: QUESO

  • Reference work entry
  • First Online:
Handbook of Uncertainty Quantification

Abstract

The Parallel C++ Statistical Library for the Quantification of Uncertainty for Estimation, Simulation, and Optimization (QUESO) is a collection of statistical algorithms and programming constructs supporting research into the quantification of uncertainty of models and their predictions. QUESO is primarily focused on solving statistical inverse problems using Bayes’ theorem, which expresses a distribution of possible values for a set of uncertain parameters (the posterior distribution) in terms of the existing knowledge of the system (the prior) and noisy observations of a physical process, represented by a likelihood distribution. The posterior distribution is not often known analytically and so requires computational methods. It is typical to compute probabilities and moments from the posterior distribution, but this is often a high-dimensional object, and standard Riemann-type methods for quadrature become prohibitively expensive. The approach QUESO takes in this regard is to rely on Markov chain Monte Carlo (MCMC) methods which are well suited to evaluating quantities such as probabilities and moments of high-dimensional probability distributions. QUESO’s intended use is as tool to assist and facilitate coupling uncertainty quantification to a specific application called a forward problem. While many libraries presently exist that solve Bayesian inference problems, QUESO is a specialized piece of software primarily designed to solve such problems by utilizing parallel environments demanded by large-scale forward problems. QUESO is written in C++, uses MPI, and utilizes libraries already available to the scientific community. Thus, the target audience of this library are researchers who have solid background in Bayesian methods, are comfortable with UNIX concepts and the command line, and have knowledge of a programming language, preferably C/C++.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Prudencio, E.E., Schulz, K.W.: Euro-Par 2011: Parallel Processing Workshops, pp. 398–407. Springer (2012). http://dx.doi.org/10.1007/978-3-642-29737-3_44

  2. Estacio-Hiroms, K.C., Prudencio, E.E.: Quantification of Uncertainty for Estimation, Simulation, and Optimization (QUESO), User’s Manual (2008). Unpbulished, http://www.libqueso.com/.

  3. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems, vol. 160. Springer, New York (2005)

    MATH  Google Scholar 

  4. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: J. Chem. Phys. 21 (6), 1087 (1953). doi:10.1063/1.1699114. http://link.aip.org/link/JCPSA6/v21/i6/p1087/s1&Agg=doi

  5. Hastings, W.K.: Biometrika 57 (1), 97 (1970). doi:10.1093/biomet/57.1.97. http://biomet.oxfordjournals.org/cgi/doi/10.1093/biomet/57.1.97

    Article  MathSciNet  Google Scholar 

  6. Cheung, S.H., Prudencio, E.E.: Int. J. Uncertain. Quantif. 2 (3), p. 215–237 (2012)

    Google Scholar 

  7. Haario, H., Laine, M., Mira, A., Saksman, E.: Stat. Comput. 16 (4), 339 (2006). doi:10.1007/s11222-006-9438-0. http://link.springer.com/10.1007/s11222-006-9438-0

    Article  MathSciNet  Google Scholar 

  8. Patil, A., Huard, D., Fonnesbeck, C.J.: J. Stat. Softw. 35 (4), p. 1–81. (2010)

    Google Scholar 

  9. Hunter, J.D.: Comput. Sci. Eng. 9 (3), 90 (2007)

    Article  Google Scholar 

  10. Foreman-Mackey, D., Hogg, D.W., Lang, D., Goodman, J.: Publ. Astron. Soc. Pac. 125 (925), 306 (2013)

    Article  Google Scholar 

  11. Core Team, R.: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2013). ISBN 3-900051-07-0, http://www.R-project.org/.

    Google Scholar 

  12. Stan Development Team: Stan: a c++ library for probability and sampling, version 2.5.0 (2014). http://mc-stan.org/

  13. Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D.: Stat. Comput. 10 (4), 325 (2000)

    Article  Google Scholar 

  14. Adams, B.M., Hart, W.E., Eldred, M.S., Dunlavy, D.M., Hough, P.D., Giunta, A.A., Griffin, J.D., Martinez-Canales, M.L., Watson, J.P., Kolda, T.G.: DAKOTA, a Multilevel Parellel Object-oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 4.0 Uers’s Manual (2006)

    Google Scholar 

  15. Cotter, S.L., Roberts, G.O., Stuart, A.M., White, D.: http://arxiv.org/abs/1202.0709 (2012)

  16. Bogachev, V.I.: Gaussian Measures. American Mathematical Society, Providence (1998)

    Book  MATH  Google Scholar 

  17. Lifshits, M.A.: Gaussian Random Functions. Springer Netherlands (1995)

    Book  MATH  Google Scholar 

  18. Mira, A.: LIX (3–4), 231 (2001)

    Google Scholar 

  19. Mira, A.: Stat. Sci. 16 (4), 340 (2002). doi:10.1214/ss/1015346319. http://projecteuclid.org/euclid.ss/1015346319

    Article  Google Scholar 

  20. Tierney, L., Mira, A.: Stat. Med. 18, 2507 (1999)

    Article  Google Scholar 

  21. Green, P.J., Mira, A.: Biometrika 88, 1035 (2001)

    Article  MathSciNet  Google Scholar 

  22. Girolami, M., Calderhead, B.: J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 73 (2), 123 (2011). doi:10.1111/j.1467-9868.2010.00765.x. http://doi.wiley.com/10.1111/j.1467-9868.2010.00765.x

  23. Martin, J., Wilcox, L., Burstedde, C., Ghattas, O.: SIAM J. Sci. Comput. 34 (3), 1460 (2012)

    Article  MathSciNet  Google Scholar 

  24. Bui-thanh, T., Ghattas, O., Higdon, D.: SIAM J. Sci. Comput. 34 (6), 2837 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damon McDougall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

McDougall, D., Malaya, N., Moser, R.D. (2017). The Parallel C++ Statistical Library for Bayesian Inference: QUESO. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-12385-1_57

Download citation

Publish with us

Policies and ethics