Abstract
The Parallel C++ Statistical Library for the Quantification of Uncertainty for Estimation, Simulation, and Optimization (QUESO) is a collection of statistical algorithms and programming constructs supporting research into the quantification of uncertainty of models and their predictions. QUESO is primarily focused on solving statistical inverse problems using Bayes’ theorem, which expresses a distribution of possible values for a set of uncertain parameters (the posterior distribution) in terms of the existing knowledge of the system (the prior) and noisy observations of a physical process, represented by a likelihood distribution. The posterior distribution is not often known analytically and so requires computational methods. It is typical to compute probabilities and moments from the posterior distribution, but this is often a high-dimensional object, and standard Riemann-type methods for quadrature become prohibitively expensive. The approach QUESO takes in this regard is to rely on Markov chain Monte Carlo (MCMC) methods which are well suited to evaluating quantities such as probabilities and moments of high-dimensional probability distributions. QUESO’s intended use is as tool to assist and facilitate coupling uncertainty quantification to a specific application called a forward problem. While many libraries presently exist that solve Bayesian inference problems, QUESO is a specialized piece of software primarily designed to solve such problems by utilizing parallel environments demanded by large-scale forward problems. QUESO is written in C++, uses MPI, and utilizes libraries already available to the scientific community. Thus, the target audience of this library are researchers who have solid background in Bayesian methods, are comfortable with UNIX concepts and the command line, and have knowledge of a programming language, preferably C/C++.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Prudencio, E.E., Schulz, K.W.: Euro-Par 2011: Parallel Processing Workshops, pp. 398–407. Springer (2012). http://dx.doi.org/10.1007/978-3-642-29737-3_44
Estacio-Hiroms, K.C., Prudencio, E.E.: Quantification of Uncertainty for Estimation, Simulation, and Optimization (QUESO), User’s Manual (2008). Unpbulished, http://www.libqueso.com/.
Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems, vol. 160. Springer, New York (2005)
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: J. Chem. Phys. 21 (6), 1087 (1953). doi:10.1063/1.1699114. http://link.aip.org/link/JCPSA6/v21/i6/p1087/s1&Agg=doi
Hastings, W.K.: Biometrika 57 (1), 97 (1970). doi:10.1093/biomet/57.1.97. http://biomet.oxfordjournals.org/cgi/doi/10.1093/biomet/57.1.97
Cheung, S.H., Prudencio, E.E.: Int. J. Uncertain. Quantif. 2 (3), p. 215–237 (2012)
Haario, H., Laine, M., Mira, A., Saksman, E.: Stat. Comput. 16 (4), 339 (2006). doi:10.1007/s11222-006-9438-0. http://link.springer.com/10.1007/s11222-006-9438-0
Patil, A., Huard, D., Fonnesbeck, C.J.: J. Stat. Softw. 35 (4), p. 1–81. (2010)
Hunter, J.D.: Comput. Sci. Eng. 9 (3), 90 (2007)
Foreman-Mackey, D., Hogg, D.W., Lang, D., Goodman, J.: Publ. Astron. Soc. Pac. 125 (925), 306 (2013)
Core Team, R.: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2013). ISBN 3-900051-07-0, http://www.R-project.org/.
Stan Development Team: Stan: a c++ library for probability and sampling, version 2.5.0 (2014). http://mc-stan.org/
Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D.: Stat. Comput. 10 (4), 325 (2000)
Adams, B.M., Hart, W.E., Eldred, M.S., Dunlavy, D.M., Hough, P.D., Giunta, A.A., Griffin, J.D., Martinez-Canales, M.L., Watson, J.P., Kolda, T.G.: DAKOTA, a Multilevel Parellel Object-oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 4.0 Uers’s Manual (2006)
Cotter, S.L., Roberts, G.O., Stuart, A.M., White, D.: http://arxiv.org/abs/1202.0709 (2012)
Bogachev, V.I.: Gaussian Measures. American Mathematical Society, Providence (1998)
Lifshits, M.A.: Gaussian Random Functions. Springer Netherlands (1995)
Mira, A.: LIX (3–4), 231 (2001)
Mira, A.: Stat. Sci. 16 (4), 340 (2002). doi:10.1214/ss/1015346319. http://projecteuclid.org/euclid.ss/1015346319
Tierney, L., Mira, A.: Stat. Med. 18, 2507 (1999)
Green, P.J., Mira, A.: Biometrika 88, 1035 (2001)
Girolami, M., Calderhead, B.: J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 73 (2), 123 (2011). doi:10.1111/j.1467-9868.2010.00765.x. http://doi.wiley.com/10.1111/j.1467-9868.2010.00765.x
Martin, J., Wilcox, L., Burstedde, C., Ghattas, O.: SIAM J. Sci. Comput. 34 (3), 1460 (2012)
Bui-thanh, T., Ghattas, O., Higdon, D.: SIAM J. Sci. Comput. 34 (6), 2837 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing Switzerland
About this entry
Cite this entry
McDougall, D., Malaya, N., Moser, R.D. (2017). The Parallel C++ Statistical Library for Bayesian Inference: QUESO. In: Ghanem, R., Higdon, D., Owhadi, H. (eds) Handbook of Uncertainty Quantification. Springer, Cham. https://doi.org/10.1007/978-3-319-12385-1_57
Download citation
DOI: https://doi.org/10.1007/978-3-319-12385-1_57
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-12384-4
Online ISBN: 978-3-319-12385-1
eBook Packages: Mathematics and StatisticsReference Module Computer Science and Engineering