Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improving Impossible Differential Cryptanalysis with Concrete Investigation of Key Scheduling Algorithm and Its Application to LBlock

  • Conference paper
Network and System Security (NSS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8792))

Included in the following conference series:

Abstract

Impossible differential cryptanalysis has been proved to be one of the most powerful techniques to attack block ciphers. Based on the impossible differential paths, we can usually add several rounds before or after to launch a key recovery attack. Impossible differential cryptanalysis is powerful not only because the number of rounds it can break is very competitive compared to other attacks, but also unlike differential attacks which are statistical attacks in the essential, impossible differential analysis does not require many statistical assumptions. In this paper, we investigate the key recovery attack part of the impossible differential cryptanalysis. We point out that when taking the (non-linear) key scheduling algorithm into consideration, we can further derive the redundancy among the subkeys, and thus can filter the wrong key at a rather early stage. This can help us control the time complexity and increase the number of rounds we can attack. As an application, we analyze recently proposed lightweight block cipher LBlock, and as a result, we can break 23 rounds with complexity 277.4 encryptions without using the whole code block, which is by far the best attack against this cipher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991)

    Google Scholar 

  3. Blondeau, C., Gérard, B., Nyberg, K.: Multiple differential cryptanalysis using LLR and χ 2 statistics. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 343–360. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Boura, C., Minier, M., Naya-Plasencia, M., Suder, V.: Improved impossible differential attacks against round-reduced lblock. Cryptology ePrint Archive, Report 2014/279 (2014), http://eprint.iacr.org/

  6. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Chen, J., Miyaji, A.: Differential cryptanalysis and boomerang cryptanalysis of LBlock. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES Workshops 2013. LNCS, vol. 8128, pp. 1–15. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Chen, J., Jia, K., Yu, H., Wang, X.: New impossible differential attacks of reduced-round camellia-192 and camellia-256. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 16–33. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Karakoç, F., Demirci, H., Emre Harmancı, A.: Impossible differential cryptanalysis of reduced-round LBlock. In: Askoxylakis, I., Pöhls, H.C., Posegga, J. (eds.) WISTP 2012. LNCS, vol. 7322, pp. 179–188. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Kim, J., Hong, S., Sung, J., Lee, S., Lim, J., Sung, S.: Impossible differential cryptanalysis for block cipher structures. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 82–96. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Liu, Y., Gu, D., Liu, Z., Li, W.: Impossible differential attacks on reduced-round LBlock. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 97–108. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Lu, J., Dunkelman, O., Keller, N., Kim, J.: New impossible differential attacks on AES. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 279–293. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Marine, M., Naya-Plasencia, M.: Some preliminary studies on the differential behavior of the lightweight block cipher LBlock. In: ECRYPT Workshop on Lightweight Cryptography, pp. 35–48 (2011)

    Google Scholar 

  14. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  15. Minier, M., Naya-Plasencia, M.: A related key impossible differential attack against 22 rounds of the lightweight block cipher lblock, vol. 112, pp. 624–629. Elsevier North-Holland, Inc., Amsterdam (2012)

    Google Scholar 

  16. Sasaki, Y., Wang, L.: Comprehensive study of integral analysis on 22-round LBlock. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 156–169. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Sasaki, Y., Wang, L.: Meet-in-the-middle technique for integral attacks against feistel ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 234–251. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. Soleimany, H., Nyberg, K.: Zero-correlation linear cryptanalysis of reduced-round lblock, vol. 2012, p. 570 (2012)

    Google Scholar 

  19. Wen, L., Wang, M.-Q., Zhao, J.-Y.: Related-key impossible differential attack on reduced-round lblock. Journal of Computer Science and Technology 29(1), 165–176 (2014)

    Article  Google Scholar 

  20. Wheeler, D.J., Needham, R.M.: Tea, a tiny encryption algorithm. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  21. Wu, W., Zhang, L.: LBlock: A lightweight block cipher. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, J., Futa, Y., Miyaji, A., Su, C. (2014). Improving Impossible Differential Cryptanalysis with Concrete Investigation of Key Scheduling Algorithm and Its Application to LBlock. In: Au, M.H., Carminati, B., Kuo, CC.J. (eds) Network and System Security. NSS 2015. Lecture Notes in Computer Science, vol 8792. Springer, Cham. https://doi.org/10.1007/978-3-319-11698-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11698-3_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11697-6

  • Online ISBN: 978-3-319-11698-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics