Abstract
Impossible differential cryptanalysis has been proved to be one of the most powerful techniques to attack block ciphers. Based on the impossible differential paths, we can usually add several rounds before or after to launch a key recovery attack. Impossible differential cryptanalysis is powerful not only because the number of rounds it can break is very competitive compared to other attacks, but also unlike differential attacks which are statistical attacks in the essential, impossible differential analysis does not require many statistical assumptions. In this paper, we investigate the key recovery attack part of the impossible differential cryptanalysis. We point out that when taking the (non-linear) key scheduling algorithm into consideration, we can further derive the redundancy among the subkeys, and thus can filter the wrong key at a rather early stage. This can help us control the time complexity and increase the number of rounds we can attack. As an application, we analyze recently proposed lightweight block cipher LBlock, and as a result, we can break 23 rounds with complexity 277.4 encryptions without using the whole code block, which is by far the best attack against this cipher.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)
Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991)
Blondeau, C., Gérard, B., Nyberg, K.: Multiple differential cryptanalysis using LLR and χ 2 statistics. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 343–360. Springer, Heidelberg (2012)
Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)
Boura, C., Minier, M., Naya-Plasencia, M., Suder, V.: Improved impossible differential attacks against round-reduced lblock. Cryptology ePrint Archive, Report 2014/279 (2014), http://eprint.iacr.org/
De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)
Chen, J., Miyaji, A.: Differential cryptanalysis and boomerang cryptanalysis of LBlock. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES Workshops 2013. LNCS, vol. 8128, pp. 1–15. Springer, Heidelberg (2013)
Chen, J., Jia, K., Yu, H., Wang, X.: New impossible differential attacks of reduced-round camellia-192 and camellia-256. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 16–33. Springer, Heidelberg (2011)
Karakoç, F., Demirci, H., Emre Harmancı, A.: Impossible differential cryptanalysis of reduced-round LBlock. In: Askoxylakis, I., Pöhls, H.C., Posegga, J. (eds.) WISTP 2012. LNCS, vol. 7322, pp. 179–188. Springer, Heidelberg (2012)
Kim, J., Hong, S., Sung, J., Lee, S., Lim, J., Sung, S.: Impossible differential cryptanalysis for block cipher structures. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 82–96. Springer, Heidelberg (2003)
Liu, Y., Gu, D., Liu, Z., Li, W.: Impossible differential attacks on reduced-round LBlock. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 97–108. Springer, Heidelberg (2012)
Lu, J., Dunkelman, O., Keller, N., Kim, J.: New impossible differential attacks on AES. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 279–293. Springer, Heidelberg (2008)
Marine, M., Naya-Plasencia, M.: Some preliminary studies on the differential behavior of the lightweight block cipher LBlock. In: ECRYPT Workshop on Lightweight Cryptography, pp. 35–48 (2011)
Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)
Minier, M., Naya-Plasencia, M.: A related key impossible differential attack against 22 rounds of the lightweight block cipher lblock, vol. 112, pp. 624–629. Elsevier North-Holland, Inc., Amsterdam (2012)
Sasaki, Y., Wang, L.: Comprehensive study of integral analysis on 22-round LBlock. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 156–169. Springer, Heidelberg (2013)
Sasaki, Y., Wang, L.: Meet-in-the-middle technique for integral attacks against feistel ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 234–251. Springer, Heidelberg (2013)
Soleimany, H., Nyberg, K.: Zero-correlation linear cryptanalysis of reduced-round lblock, vol. 2012, p. 570 (2012)
Wen, L., Wang, M.-Q., Zhao, J.-Y.: Related-key impossible differential attack on reduced-round lblock. Journal of Computer Science and Technology 29(1), 165–176 (2014)
Wheeler, D.J., Needham, R.M.: Tea, a tiny encryption algorithm. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)
Wu, W., Zhang, L.: LBlock: A lightweight block cipher. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Chen, J., Futa, Y., Miyaji, A., Su, C. (2014). Improving Impossible Differential Cryptanalysis with Concrete Investigation of Key Scheduling Algorithm and Its Application to LBlock. In: Au, M.H., Carminati, B., Kuo, CC.J. (eds) Network and System Security. NSS 2015. Lecture Notes in Computer Science, vol 8792. Springer, Cham. https://doi.org/10.1007/978-3-319-11698-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-11698-3_14
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11697-6
Online ISBN: 978-3-319-11698-3
eBook Packages: Computer ScienceComputer Science (R0)