Nothing Special   »   [go: up one dir, main page]

Skip to main content

Predicting the Popularity of Social Curation

  • Conference paper
Knowledge and Systems Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 326))

Abstract

The amount and variety of social media content such as status, images, movies, and music are increasing rapidly. Accordingly, the social curation service is emerging as a new way to connect, select, and organize information on a massive scale. One noticeable feature of social curation services is that they are loosely supervised: the content that users create in the service is manually collected, selected, and maintained. A large proportion of these contents are arbitrarily created by inexperienced users. In this paper, we look into social curation, particularly, the Storify website1. This is the most popular social curation for creating stories included in various domains such as Twitter, Flicker, and YouTube.We propose a machine learning method with feature extraction to filter these contents and to predict the popularity of social curation data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahmed, M., Spagna, S., Huici, F., Niccolini, S.: A peek into the future: Predicting the evolution of popularity in user generated content. In: Proc. WSDM 2013 (2013)

    Google Scholar 

  2. Bandari, R., Asur, S., Huberman, B.A.: The pulse of news in social media: Forecasting popularity, CoRR, abs/1202.0332 (2012)

    Google Scholar 

  3. Cha, M., Mislove, A., Gummadi, K.P.: A measurement-driven analysis of information propagation in the Flickr social network. In: Proc. WWW 2009(2009)

    Google Scholar 

  4. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Trans. Intelligent Systems and Technology 2 (2011)

    Google Scholar 

  5. Chen, Y.-W., Lin, C.-J.: Combining SVMs with various feature selection strategies. In: Guyon, I., Nikravesh, M., Gunn, S., Zadeh, L.A. (eds.) Feature Extraction. STUDFUZZ, vol. 207, pp. 315–324. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Duh, K., Hirao, T., Kimura, A., Ishiguro, K., Iwata, T., Au Yeung, C.-M.: Creating stories: Social curation on twitter messages. In: Proc. ICWSM (2012)

    Google Scholar 

  7. Greene, D., Sheridan, G., Smyth, B., Cunningham, P.: Aggregating content and network information to curate twitter user lists. In: Proc. ACM RecSys workshop, RSWeb (2012)

    Google Scholar 

  8. Hall, C., Zarro, M.: Social curation on the website Pinterest.com. In: Proc. ASIST 2012 (2012)

    Google Scholar 

  9. Hogg, T., Lerman, K.: Social dynamics of Digg, CoRR, abs/1202.0031 (2012)

    Google Scholar 

  10. Hong, L., Dan, O., Daviso, B.D.: Predicting popular messages in Twitter. In: Proc. WWW 2011 (2011)

    Google Scholar 

  11. Ishiguro, K., Kimura, A., Takeuchi, K.: Towards automatic image understanding and mining via social curation. In: Proc. ICDM 2012 (2012)

    Google Scholar 

  12. Jamali, S., Rangwala, H.: Digging Digg: Comment mining, popularity prediction, and social network analysis. In: Proc. WISM 2009 (2009)

    Google Scholar 

  13. Fincham, K.: Storify. The National Association for Media Literacy Educations Journal of Media Literacy Education (2011)

    Google Scholar 

  14. Kim, S.-D., Kim, S.-H., Cho, H.-G.: Predicting the virtual temperature of web-blog articles as a measurement tool for online popularity. In: Proc. CIT 2011(2011)

    Google Scholar 

  15. Lakkaraju, H., Ajmera, J.: Attention prediction on social media brand pages. In: Proc. CIKM 2011(2011)

    Google Scholar 

  16. Lee, J.G., Moon, S., Salamatian, K.: An approach to model and predict the popularity of online contents with explanatory factors. In: Proc. WI-IAT (2010)

    Google Scholar 

  17. Lee, J.G., Moon, S., Salamatian, K.: Modeling and predicting the popularity of online contents with Cox proportional hazard regression model. Neurocomputing (2012)

    Google Scholar 

  18. Lerman, K., Hogg, T.: Using a model of social dynamics to predict popularity of news. CoRR, abs/1004.5354 (2010)

    Google Scholar 

  19. Suh, B., Hong, L., Pirolli, P., Chi, E.H.: Want to be retweeted? Large scale analytics on factors impacting retweet in Twitter network. In: Social Computing, SocialCom (2010)

    Google Scholar 

  20. Szabo, G., Huberman, B.A.: Predicting the popularity of online content. Communications of the ACM 53, 80–88 (2010)

    Article  Google Scholar 

  21. Tsagkias, M., Weerkamp, W., de Rijke, M.: News comments:Exploring, modeling, and online prediction. In: Gurrin, C., He, Y., Kazai, G., Kruschwitz, U., Little, S., Roelleke, T., Rüger, S., van Rijsbergen, K. (eds.) ECIR 2010. LNCS, vol. 5993, pp. 191–203. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. YouTube Statistics, http://www.youtube.com/yt/press/statistics.html

  23. Zarro, M., Hall, C.: Exploring social curation. D-Lib Magazine 18(11/12) (November/December 2012)

    Google Scholar 

  24. Van Zwol, R., Rae, A., Pueyo, L.G.: Prediction of favourite photos using social, visual, and textual signals. In: Proc. ACMMM (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binh Thanh Kieu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kieu, B.T., Ichise, R., Pham, S.B. (2015). Predicting the Popularity of Social Curation. In: Nguyen, VH., Le, AC., Huynh, VN. (eds) Knowledge and Systems Engineering. Advances in Intelligent Systems and Computing, vol 326. Springer, Cham. https://doi.org/10.1007/978-3-319-11680-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11680-8_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11679-2

  • Online ISBN: 978-3-319-11680-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics