Nothing Special   »   [go: up one dir, main page]

Skip to main content

Incremental SAT-Based Method with Native Boolean Cardinality Handling for the Hamiltonian Cycle Problem

  • Conference paper
Logics in Artificial Intelligence (JELIA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8761))

Included in the following conference series:

Abstract

The Hamiltonian cycle problem (HCP) is the problem of finding a spanning cycle in a given graph. HCP is NP-complete and has been known as an important problem due to its close relationship to the travelling salesman problem (TSP), which can be seen as an optimization variant of finding a minimum cost cycle. In a different viewpoint, HCP is a special case of TSP. In this paper, we propose an incremental SAT-based method for solving HCP. The number of clauses needed for a CNF encoding of HCP often prevents SAT-based methods from being scalable. Our method reduces that number of clauses by relaxing some constraints and by handling specifically cardinality constraints. Our approach has been implemented on top of the SAT solver Sat4j using Scarab. An experimental evaluation is carried out on several benchmark sets and compares our incremental SAT-based method against an existing eager SAT-based method and specialized methods for HCP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. DIMACS Graph Coloring, http://mat.gsia.cmu.edu/COLOR/instances.html

  2. DIMACS TSP Challnege, http://dimacs.rutgers.edu/Challenges/TSP/

  3. LKH, http://www.akira.ruc.dk/~keld/research/LKH/

  4. TSPLIB, http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ .

  5. Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E., Stuckey, P.J.: To encode or to propagate? The best choice for each constraint in SAT. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 97–106. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Bailleux, O., Boufkhad, Y., Roussel, O.: A translation of pseudo boolean constraints to SAT. Journal on Satisfiability, Boolean Modeling and Computation 2(1-4), 191–200 (2006)

    MATH  Google Scholar 

  7. Bryant, R.E., Velev, M.N.: Boolean satisfiability with transitivity constraints. ACM Trans. Comput. Log. 3(4), 604–627 (2002)

    Article  MathSciNet  Google Scholar 

  8. Carpeneto, G., Toth, P.: Some new branching and bounding criteria for the asymmetric travelling salesman problem. Management Science 26(7), 736–743 (1980)

    Article  MathSciNet  Google Scholar 

  9. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Dvorák, W., Järvisalo, M., Wallner, J.P., Woltran, S.: Complexity-sensitive decision procedures for abstract argumentation. Artif. Intell. 206, 53–78 (2014)

    Article  Google Scholar 

  11. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Eshragh, A., Filar, J.A., Haythorpe, M.: A hybrid simulation-optimization algorithm for the Hamiltonian cycle problem. Annals OR 189(1), 103–125 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Frisch, A.M., Giannaros, P.A.: SAT encodings of the at-most-k constraint: Some old, some new, some fast, some slow. In: Proceedings of the 9th International Workshop on Constraint Modelling and Reformulation, ModRef 2010 (2010)

    Google Scholar 

  14. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Ganesh, V., O’Donnell, C.W., Soos, M., Devadas, S., Rinard, M.C., Solar-Lezama, A.: Lynx: A programmatic SAT solver for the rna-folding problem. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 143–156. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Gould, R.J.: Advances on the Hamiltonian problem - a survey. Graphs and Combinatorics 19(1), 7–52 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gould, R.J.: Recent advances on the Hamiltonian problem: Survey III. Graphs and Combinatorics 30(1), 1–46 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hnich, B., Walsh, T., Smith, B.M.: Dual modelling of permutation and injection problems. J. Artif. Intell. Res (JAIR) 21, 357–391 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Hoos, H.H.: SAT-encodings, search space structure, and local search performance. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 296–303 (1999)

    Google Scholar 

  20. Iwama, K., Miyazaki, S.: SAT-variable complexity of hard combinatorial problems. In: Proceedings of the IFIP 13th World Computer Congress, pp. 253–258 (1994)

    Google Scholar 

  21. Jäger, G., Zhang, W.: An effective algorithm for and phase transitions of the directed Hamiltonian cycle problem. J. Artif. Intell. Res. (JAIR) 39, 663–687 (2010)

    MATH  Google Scholar 

  22. Janota, M., Grigore, R., Marques-Silva, J.: Counterexample guided abstraction refinement algorithm for propositional circumscription. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 195–207. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving qbf with counterexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103 (1972)

    Google Scholar 

  25. Kroning, D., Ouaknine, J., Seshia, S.A., Strichman, O.: Abstraction-based satisfiability solving of presburger arithmetic. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 308–320. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  26. Laporte, G.: The traveling salesman problem: An overview of exact and approximate algorithms. European Journal of Operational Research 59(2), 231–247 (1992)

    Article  MATH  Google Scholar 

  27. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. Journal on Satisfiability, Boolean Modeling and Computation 7, 59–64 (2010)

    Google Scholar 

  28. Prestwich, S.D.: SAT problems with chains of dependent variables. Discrete Applied Mathematics 130(2), 329–350 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Marques-Silva, J., Lynce, I.: Towards robust CNF encodings of cardinality constraints. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 483–497. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  30. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  31. Soh, T., Tamura, N., Banbara, M.: Scarab: A rapid prototyping tool for SAT-based constraint programming systems. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 429–436. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  32. Velev, M.N., Gao, P.: Efficient SAT techniques for relative encoding of permutations with constraints. In: Nicholson, A., Li, X. (eds.) AI 2009. LNCS (LNAI), vol. 5866, pp. 517–527. Springer, Heidelberg (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Soh, T., Le Berre, D., Roussel, S., Banbara, M., Tamura, N. (2014). Incremental SAT-Based Method with Native Boolean Cardinality Handling for the Hamiltonian Cycle Problem. In: Fermé, E., Leite, J. (eds) Logics in Artificial Intelligence. JELIA 2014. Lecture Notes in Computer Science(), vol 8761. Springer, Cham. https://doi.org/10.1007/978-3-319-11558-0_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11558-0_52

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11557-3

  • Online ISBN: 978-3-319-11558-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics