Nothing Special   »   [go: up one dir, main page]

Skip to main content

Emulating Cellular Automata in Chemical Reaction-Diffusion Networks

  • Conference paper
DNA Computing and Molecular Programming (DNA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8727))

Included in the following conference series:

Abstract

Chemical reactions and diffusion can produce a wide variety of static or transient spatial patterns in the concentrations of chemical species. Little is known, however, about what dynamical patterns of concentrations can be reliably programmed into such reaction-diffusion systems. Here we show that given simple, periodic inputs, chemical reactions and diffusion can reliably emulate the dynamics of a deterministic cellular automaton, and can therefore be programmed to produce a wide range of complex, discrete dynamics. We describe a modular reaction-diffusion program that orchestrates each of the fundamental operations of a cellular automaton: storage of cell state, communication between neighboring cells, and calculation of cells’ subsequent states. Starting from a pattern that encodes an automaton’s initial state, the concentration of a “state” species evolves in space and time according to the automaton’s specified rules. To show that the reaction-diffusion program we describe produces the target dynamics, we simulate the reaction-diffusion network for two simple 1-dimensional cellular automata using coupled partial differential equations. Reaction-diffusion based cellular automata could potentially be built in vitro using networks of DNA molecules that interact via branch migration processes and could in principle perform universal computation, storing their state as a pattern of molecular concentrations, or deliver spatiotemporal instructions encoded in concentrations to direct the behavior of intelligent materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd edn. Springer, New York (2003)

    Google Scholar 

  2. Greenfield, D., et al.: Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. PLoS Biol. 7 (2009)

    Google Scholar 

  3. Baker, M.D., Wolanin, P.M., Stock, J.B.: Signal transduction in bacterial chemotaxis. Bioessay 28(1), 9–22 (2006)

    Article  Google Scholar 

  4. Gács, P.: Reliable cellular automata with self-organization. J. Stat. Phys. 103, 45–267 (2001)

    Article  MATH  Google Scholar 

  5. Gács, P., Reif, J.: A simple three-dimensional real-time reliable cellular array. J. Comput. Syst. Sci. 36, 125–147 (1988)

    Article  MATH  Google Scholar 

  6. Cook, M.: Universality in elementary cellular automata. Complex Systems 15, 1–40 (2004)

    MATH  MathSciNet  Google Scholar 

  7. Neary, T., Woods, D.: P-completeness of cellular automaton rule 110. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 132–143. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. von Neumann, J.A.W., Burks, E.: The Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1966)

    Google Scholar 

  9. Codd, E.F.: Cellular automata. Academic Press, Inc., San Diego (1968)

    MATH  Google Scholar 

  10. Langton, C.G.: Self-reproduction in cellular automata. Physica D 10(1), 135–144 (1984)

    Article  Google Scholar 

  11. Sayama, H.: A new structurally dissolvable self-reproducing loop evolving in a simple cellular automata space. Artificial Life 5(4), 343–365 (1999)

    Article  Google Scholar 

  12. Turing, A.M.: The chemical basis of morphogenesis. Phil. T. Roy. Soc. B 237, 37–72 (1952)

    Article  Google Scholar 

  13. Tóth, Á., Showalter, K.: Logic gates in excitable media. The Journal of Chemical Physics 103, 2058–2066 (1995)

    Article  Google Scholar 

  14. Steinbock, O., Kettunen, P., Showalter, K.: Chemical wave logic gates. The Journal of Physical Chemistry 100, 18970–18975 (1996)

    Article  Google Scholar 

  15. Bánsági, T., Vanag, V.K., Epstein, I.R.: Tomography of reaction-diffusion microemulsions reveals three-dimensional Turing patterns. Science 331, 1309–1312 (2011)

    Article  MathSciNet  Google Scholar 

  16. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. P. Natl. Acad. Sci. 107, 5393–5398 (2010)

    Article  Google Scholar 

  17. Chen, Y., et al.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755–762 (2013)

    Article  Google Scholar 

  18. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement. Science 332, 1196–1201 (2011)

    Article  Google Scholar 

  19. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006)

    Article  Google Scholar 

  20. Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale circuits. J. R. Soc. Interface 8, 1281–1297 (2011)

    Article  Google Scholar 

  21. Smith, D.E., Perkins, T.T., Chu, S.: Dynamical scaling of DNA diffusion coefficients. Macromolecules 29, 1372–1373 (1996)

    Article  Google Scholar 

  22. Allen, P.B., Chen, X., Ellington, A.D.: Spatial control of DNA reaction networks by DNA sequence. Molecules 17, 13390–13402 (2012)

    Article  Google Scholar 

  23. Chirieleison, S.M., Allen, P.B., Simpson, Z.B., Ellington, A.D., Chen, X.: Pattern transformation with DNA circuits. Nature Chem. 5, 1000–1005 (2013)

    Article  Google Scholar 

  24. Scalise, D., Schulman, R.: Designing modular reaction-diffusion programs for complex pattern formation. Technology 2, 55–66 (2014)

    Article  Google Scholar 

  25. Ruiza, S.A., Chen, C.S.: Microcontact printing: A tool to pattern. Soft Matter 3, 168–177 (2007)

    Article  Google Scholar 

  26. Du, Y., Lo, E., Ali, S., Khademhosseini, A.: Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. P. Natl. Acad. Sci. 105, 9522–9527 (2008)

    Article  Google Scholar 

  27. Nehaniv, C.L.: Asynchronous automata networks can emulate any synchronous automata network. International Journal of Algebra and Computation 14, 719–739 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  29. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Natural Computing 7, 615–633 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Peterson, J.L.: Petri net theory and the modeling of systems. Prentice Hall, Englewood Cliffs (1981)

    Google Scholar 

  31. Lindenmayer, A.: Mathematical models for cellular interactions in development I. filaments with one-sided inputs. J. Theor. Biol. 18, 280–299 (1968)

    Article  Google Scholar 

  32. Wu, A., Rosenfeld, A.: Cellular graph automata. I. basic concepts, graph property measurement, closure properties. Information and Control 42, 305–329 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  33. Tomita, K., Kurokawa, H., Murata, S.: Graph automata: natural expression of self-reproduction. Physica D: Nonlinear Phenomena 171, 197–210 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009)

    Article  Google Scholar 

  35. Lukacs, G.L., Haggie, P., Seksek, O., Lechardeur, D., Verkman, N.F.A.: Size-dependent DNA mobility in cytoplasm and nucleus. J. Biol. Chem. 275 (2000)

    Google Scholar 

  36. Stellwagen, E., Lu, Y., Stellwagen, N.: Unified description of electrophoresis and diffusion for DNA and other polyions. Biochemistry 42 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Scalise, D., Schulman, R. (2014). Emulating Cellular Automata in Chemical Reaction-Diffusion Networks. In: Murata, S., Kobayashi, S. (eds) DNA Computing and Molecular Programming. DNA 2014. Lecture Notes in Computer Science, vol 8727. Springer, Cham. https://doi.org/10.1007/978-3-319-11295-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11295-4_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11294-7

  • Online ISBN: 978-3-319-11295-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics