Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Efficient Multi Level Thresholding Method for Image Segmentation Based on the Hybridization of Modified PSO and Otsu’s Method

  • Chapter
  • First Online:
Computational Intelligence Applications in Modeling and Control

Part of the book series: Studies in Computational Intelligence ((SCI,volume 575))

Abstract

In the area of image processing, segmentation of an image into multiple regions is very important for classification and recognition steps. It has been widely used in many application fields such as medical image analysis to characterize and detect anatomical structures, robotics features extraction for mobile robot localization and detection and map procession for lines and legends finding. Many techniques have been developed in the field of image segmentation. Methods based on intelligent techniques are the most used such as Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), and Particle Swarm Optimization (PSO) called metaheuristics algorithms. In this paper, we describe a novel method for segmentation of images based on one of the most popular and efficient metaheuristic algorithm called Particle Swarm optimization (PSO) for determining multilevel threshold for a given image. The proposed method takes advantage of the characteristics of the particle swarm optimization and improves the objective function value to updating the velocity and the position of particles. This method is compared to the basic PSO method, also, it is compared with other known multilevel segmentation methods to demonstrate its efficiency. Experimental results show that this method can reliably segment and give threshold values than other methods considering different measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Melouah, A.: A novel region growing segmentation algorithm for mass extraction in mammograms. Model. Approaches Algorithms Adv. Comput. Appl. Stud. Comput. Intel. 488, 95–104 (2013)

    Article  Google Scholar 

  2. Chakraborty, J., Mukhopadhyay, S., Singla, V., Khandelwal, N., Rangayyan, R.M.: Detection of masses in mammograms using region growing controlled by multilevel thresholding. In: The 25th International Symposium on Computer-Based Medical Systems (CBMS), Rome, pp. 1–6, 20–22 June 2012. doi: 10.1109/CBMS.2012.6266308

  3. Dragon, R., Ostermann, J., Van Gool, L.: Robust realtime motion-split-and-merge for motion segmentation. In: The 2013 35th German Conference on Computer Science, GCPR. Saarbrücken, Germany, pp. 425–434, 3–6 Sept 2013. doi:10.1007/978-3-642-40602-7_45

  4. Chaudhuri, D., Agrawal, A.: Split-and-merge procedure for image segmentation using bimodality detection approach. Defence Sci. J. 60(3), 290–301 (2010)

    Article  Google Scholar 

  5. Cao, X., Ding, W., Hu, S., Su, L.: Image segmentation based on edge growth. In: Proceedings of the 2012 International Conference on Information Technology and Software Engineering, pp. 541–548 (2013). doi:10.1007/978-3-642-34531-9_57

  6. Sharif, M., Raza, M., Mohsin, S.: Face recognition using edge information and DCT. Sindh Univ. Res. J. (Sci. Ser.) 43(2), 209–214 (2011)

    Google Scholar 

  7. Baakek, T., Chikh Mohamed, A.: Interactive image segmentation based on graph cuts and automatic multilevel thresholding for brain images. J. Med. Imaging Health Inform. 4(1), 36–42 (2014)

    Article  Google Scholar 

  8. Martin-Rodriguez, F.: New tools for gray level histogram analysis, applications in segmentation. In: 10th International Conference in Image analysis and recognition, ICIAR, Póvoa do Varzim-Portugal, pp. 326–335, 26–28 June 2013. doi:10.1007/978-3-642-39094-4_37

  9. Qifang, L., Zhe, O., Xin, C., Yongquan, Z.: A multilevel threshold image segmentation algorithm based on glowworm swarm optimization. J. Comput. Inf. Syst. 10(4), 1621–1628 (2014)

    Google Scholar 

  10. Kulkarni, R.V., Venayagamoorthy, G.K.: Bio-inspired algorithms for autonomous deployment and localization of sensor nodes. IEEE Trans. Syst. Man Cybern. 40(6), 663–675 (2010)

    Article  Google Scholar 

  11. Hamdaoui, F., Ladgham, A., Sakly, A., Mtibaa, A.: A new images segmentation method based on modified PSO algorithm. Int. J. Imaging Syst. Technol. 23(3), 265–271 (2013)

    Article  Google Scholar 

  12. Ladgham, A., Hamdaoui, F., Sakly, A., Mtibaa, A.: Fast MR brain image segmentation based on modified shuffled frog leaping algorithm. DOI, Signal Image Video Process. (2013). doi:10.1007/s11760-013-0546-y

    Google Scholar 

  13. Sun, H.J., Deng, T.Q., Jiao, Y.Y.: Remote sensing image segmentation based on rough entropy. In: 4th International Conference in Advances in Swarm Intelligence ICSI, pp. 11–419, 12–15 June 2013. doi:10.1007/978-3-642-38715-9_49

  14. Sarkar, S., Sen, N., Kundu, A., Das, S., Chaudhuri, S.S.: A differential evolutionary multilevel segmentation of near infra-red images using Renyi’s entropy. In: International Conference on Frontiers of Intelligent Computing: Theory and Applications FICTA, pp. 699–706, (2013). doi:10.1007/978-3-642-35314-7_79

  15. Daisne, J.F., Sibomana, M., Bol, A., Doumont, T., Lonneux, M., Grégoire, V.: Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithm. Radiother. Oncol. 69(3), 247–250 (2003)

    Article  Google Scholar 

  16. Huang, D.Y., Lin, T.W., Hu, W.C.: Automatic multilevel thresholding based on two-stage Otsu’s method with cluster determination by valley estimation. Int. J. Innovative Comput. Inf. Control 7(10), 5631–5644 (2011)

    Google Scholar 

  17. Ningning, Z., Tingting, Y., Shaobai, Z.: An improved FCM medical image segmentation algorithm based on MMTD. Comput. Math. Methods. Med. (2014). http://dx.doi.org/10.1155/2014/690349

  18. Yasmin, M., Mohsin, S., Sharif, M., Raza, M., Masood, S.: Brain image analysis: a survey. World Appl. Sci. J. 19(10), 1484–1494 (2012)

    Google Scholar 

  19. Raza, M., Sharif, M., Yasmin, M., Masood, S., Mohsin, S.: Brain image representation and rendering: a survey. Res. J. Appl. Sci. Eng. Technol. 4(18), 3274–3282 (2012)

    Google Scholar 

  20. Al-azawi, M.: Image thresholding using histogram fuzzy approximation. Int. J. Comput. Appl. 83(9), 36–40 (2013)

    Google Scholar 

  21. Nakib, A., Roman, S., Oulhadj, H., Siarry, P.: Fast brain MRI segmentation based on two-dimensional survival exponential entropy and particle swarm optimization. In: International Conference of the IEEE EMBS. Lyon, France, pp. 5563–5566, 23–26 Aug 2007. doi:10.1109/IEMBS.2007.4353607

  22. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66

    Google Scholar 

  23. Yao, C., Chen, H.J.: Automated retinal blood vessels segmentation based on simplified PCNN and fast 2D-Otsu algorithm. J. Cent. S. Univ. Technol. 16(4), 640–646 (2009)

    Article  Google Scholar 

  24. Huang, D.Y., Wang, C.H.: Optimal multi-level thresholding using a two-stage Otsu optimization approach. Pattern Recogn. Lett. 30(3), 275–284 (2009)

    Article  MATH  Google Scholar 

  25. Wu, B.F., Chen, Y.L., Chiu, C.C.: Recursive algorithms for image segmentation based on a discriminant criterion. Int. J. Sig. Process. 1, 55–60 (2004)

    Google Scholar 

  26. Hammouche, K., Diaf, M., Siarry, P.: A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem. Eng. Appl. Artif. Intell. 23(5), 676–688 (2010)

    Article  Google Scholar 

  27. Hammouche, K., Diaf, M., Siarry, P.: A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation. Comput. Vis. Image Underst. 109(2), 163–175 (2008)

    Article  Google Scholar 

  28. Tao, W.B., Tian, J.W., Liu, J.: Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm. Pattern Recogn. Lett. 24(16), 3069–3078 (2003)

    Article  Google Scholar 

  29. Yang, Z., Pu, Z., Qi, Z.: Relative entropy multilevel thresholding method based on genetic optimization. In: The 2003 IEEE International Conference on Neural Networks and Signal Processing, Nanjing, pp. 583–586, 14–17 Dec 2013. doi:10.1109/ICNNSP.2003.1279340

  30. Hancer, E., Ozturk, C., Karaboga, D.: Artificial bee colony based image clustering method. In: IEEE International Congress on Evolutionary Computation, Brisbane, QLD, pp. 1–5, 10–15 June 2012. doi:10.1109/CEC.2012.6252919

  31. Zhang, Y., Wu, L.: Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach. Entropy 13(4), 841–859 (2011)

    Article  MATH  Google Scholar 

  32. Geng, R.: Color image segmentation based on self-organizing maps, advances in key engineering materials. Adv. Mater. Res. 214, 693–698 (2011)

    Article  Google Scholar 

  33. Bhandari, A.K., Singh, V.K., Kumar, A., Singh, G.K.: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Syst. Appl. 41(7), 3538–3560 (2014)

    Article  Google Scholar 

  34. Gao, H., Kwong, S., Yang, J., Cao, J.: Particle swarm optimization based on intermediate disturbance strategy algorithm and its application in multi-threshold image segmentation. Inf. Sci. 250(20), 82–112 (2013)

    Article  MathSciNet  Google Scholar 

  35. Ghamisi, P., Couceiro, M.S., Benediktsson, J.A., Ferreira, N.M.F.: An efficient method for segmentation of images based on fractional calculus and natural selection. Expert Syst. Appl. 39(16), 12407–12417 (2012)

    Article  Google Scholar 

  36. Tillett, J., Rao, T.M., Sahin, F., Rao, R., Brockport, S.: Darwinian particle swarm optimization. In: The 2nd Indian International Conference on Artificial Intelligence, pp. 1474–1487 (2005)

    Google Scholar 

  37. Couceiro, M.S., Ferreira, N.M.F., Machado, J.A.T.: In fractional order Darwinian particle swarm optimization. In FSS’11, Symposium on Fractional Signals and Systems, Coimbra, Portugal, pp. 2382–2394, 4–5 Nov 2011. doi:10.1109/TGRS.2013.2260552

  38. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  39. Goldberg, D.E.: Algorithmes Génétiques: Exploration, optimisation et apprentissage automatique, Edition Wesley (1989)

    Google Scholar 

  40. Holland, J.H.: Genetic algorithms, pour la science. Ed. Sci. Am. 179, 44–50 (1992)

    Google Scholar 

  41. Man, K.F., Tang, K.S., Kwong, S.: Genetic algorithms: concepts and applications. IEEE Trans. Industr. Electron. 43(5), 519–534 (1996)

    Article  Google Scholar 

  42. Schmitt, L.M.: Fundamental study: theory of genetic algorithms. Theoret. Comput. Sci. 259(1–2), 1–61 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  43. Petrowski, A.: Une introduction à l’optimisation par algorithmes génétiques, (2001). http://www-inf.int-evry.fr/~ap/EC-tutoriel/Tutoriel.html

  44. Phulpagar, B.D., Kulkarni, S.S.: Image segmentation using genetic algorithm for four gray classes. In: IEEE International Conference on Energy, Automation and Signal, 28–30 Dec 2011. Bhubaneswar, Odisha, pp. 1-4. doi:10.1109/ICEAS.2011.6147093

  45. Phulpagar, B.D., Bichkar, R.S.: Segmentation of noisy binary images containing circular and elliptical objects using genetic algorithms. IJCA 66(22), 1–7 (2013)

    Google Scholar 

  46. Janc, K., Tarasiuk, J., Bonnet, A.S., Lipinski, P.: Genetic algorithms as a useful tool for trabecular and cortical bone segmentation. Comput. Methods Programs Biomed. 111(1), 72–83 (2013). doi:10.1016/j.cmpb.2013.03.012

    Article  Google Scholar 

  47. Manikandan, S., Ramar, K., Willjuice, I.M., Srinivasagan, K.G.: Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm. Measurement 47, 558–568 (2014)

    Article  Google Scholar 

  48. Dorigo, M., Gambardella, L.M.: Guest editorial special on ant colony optimization. IEEE Trans. Evol. Comput 6(4), 317–319 (2002)

    Google Scholar 

  49. Ajith, A., Crina, G., Vitorino, R.: Stigmergic Optimization. Stud. Comput. Intel. 31, 1–299 (2006)

    Article  Google Scholar 

  50. Beckers, R., Deneubourg, J.L., Goss, S.: Trails and U-turns in the selection of a path by the Ant Lasius Niger. J. Theor. Biol. 159(4), 397–415 (1992)

    Article  Google Scholar 

  51. Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized shortcuts in the argentine ant. Naturwissenchaften 76(12), 579–581 (1989)

    Article  Google Scholar 

  52. Dorigo, M., Maniezzo, V., Colorni, V.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B Cybern. 26(1), 29–41 (1996)

    Article  Google Scholar 

  53. Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: The First European Conference on Artificial Life. MIT Press, Paris, France, pp. 134–142, (1991)

    Google Scholar 

  54. Mousa, A.A., El-Desoky, I.M.: Stability of Pareto optimal allocation of land reclamation by multistage decision-based multipheromone ant colony optimization. Swarm Evol. Comput. 13, 13–21 (2013)

    Article  Google Scholar 

  55. Liang, Y.C., Yin, Y.C.: Optimal multilevel thresholding using a hybrid ant colony system. J. Chin. Inst. Ind. Eng. 28(1), 20–33 (2011)

    Google Scholar 

  56. Ma, L., Wang, K., Zhang, D.: A universal texture segmentation and representation scheme based on ant colony optimization for iris image processing. Comput. Math. Appl. 11(12), 1862–1866 (2009)

    Google Scholar 

  57. Tao, W., Jin, H., Liu, L.: Object segmentation using ant colony optimization algorithm and fuzzy entropy. Pattern Recogn. Lett. 28(7), 788–796 (2007)

    Article  Google Scholar 

  58. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Computer Engineering Department, Erciyes University, Turkey (2005)

    Google Scholar 

  59. Basturk, B., Karaboga, D.: An artificial bee colony (abc) algorithm for numeric function optimization. In: IEEE Swarm Intelligence Symposium, Indianapolis, Indiana, USA, May 2006

    Google Scholar 

  60. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687–697 (2008)

    Article  Google Scholar 

  61. Karaboga, D., Basturk, B.: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: Foundations of Fuzzy Logic and Soft Computing. Lecture Notes in Computer Science, vol. 45(29), pp. 789–798 (2007)

    Google Scholar 

  62. Hadidi, A., Azad, S.K., Azad, S.K.: Structural optimization using artificial bee colony algorithm. In: The second International Conference on Engineering Optimization. Lisbon, Portugal, 6–9 Sept 2010

    Google Scholar 

  63. Tereshko, V., Loengarov, A.: Collective decision-making in honeybee foraging dynamics. Comput. Inf. Syst. J. 9(3), 1–7 (2005)

    Google Scholar 

  64. Horng, M.H.: Multilevel minimum cross entropy thresholding using artificial bee colony algorithm. Telkomnika 11(9), 5229–5236 (2013)

    Article  Google Scholar 

  65. Akay, B.: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl. Soft Comput. 13(6), 3066–3091 (2013)

    Article  Google Scholar 

  66. Charansiriphaisan, K., Chiewchanwattana, S., Sunat, K.: A comparative study of improved artificial bee colony algorithms applied to multilevel image thresholding. Math. Prob. Eng., 1–17 (2013). http://dx.doi.org/10.1155/2013/927591

  67. Cao, Y.F., Xiao, Y.H., Yu, W.Y., Chen, Y.C.: Multi-level threshold image segmentation based on PSNR using artificial bee colony algorithm. Res. J. Appl. Sci. Eng. Technol. 4(2), 104–107 (2012)

    Google Scholar 

  68. Horng, M.H., Jiang, T.W: Multilevel image thresholding selection using the artificial bee colony algorithm. In: International Conference on Artificial Intelligence and Computational Intelligence, Sanya, China, pp. 318–325, 23–24 Oct 2010. doi:10.1007/978-3-642-16527-6_40

  69. Eusuff, M.M., Lansey, K.E.: Optimization of water distribution network design using the shuffled frog leaping algorithm. J. Water Resour. Plan. Manag. 129(3), 210–225 (2003)

    Article  Google Scholar 

  70. Duan, Q.Y., Gupta, V.K., Sorooshian, S.: Shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl 76(3), 502–521 (1993)

    Article  MathSciNet  Google Scholar 

  71. Fang, C., Chang, L.: An effective shuffled frog-leaping algorithm for resource-constrained project scheduling problem. Comput. Oper. Res. 39(5), 890–901 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  72. Narimani, M.R.: A new modified shuffle frog leaping algorithm for non-smooth economic dispatch. World Appl. Sci. J. 12(6), 803–814 (2011)

    Google Scholar 

  73. Wang, N., Li, X., Chen, X.H.: Fast three-dimensional Otsu thresholding with shuffled frog-leaping algorithm. Pattern Recognit. Lett. Meta-heuristic Intel. Based Image Process. 31(13), 1809–1815 (2010)

    Article  Google Scholar 

  74. Liong, S.Y., Atiquzzaman, M.: Optimal design of water distribution network using shuffled complex evolution. J. Inst. Eng. 44(1), 93–107 (2004)

    Google Scholar 

  75. Gu, Y.J., Jia, Z.H., Qin, X.Z., Yang, J., Pang, S.N.: Image segmentation algorithm based on shuffled frog-leaping with FCM. Commun. Technol. 2, 042 (2011)

    Google Scholar 

  76. Yang, C.S., Chuang, L.Y., Ke, C.H.: A combination of shuffled frog-leaping algorithm and genetic algorithm for gene selection. J. Adv. Comput. Intell. Intell. Inf. 12(3), 218–226 (2008)

    Google Scholar 

  77. Horng, M.H.: Multilevel image threshold selection based on the shuffled frog-leaping algorithm. J. Chem. Pharm. Res. 5(9), 599–605 (2013)

    Google Scholar 

  78. Ouadfel, S., Meshoul, S.: A fully adaptive and hybrid method for image segmentation using multilevel thresholding. Int. J. Image Graph. Sig. Process. (IJIGSP) 5(1), 46–57 (2013)

    Article  Google Scholar 

  79. Horng, M.H.: Multilevel image thresholding by using the shuffled frog-leaping optimization algorithm. In: 15th North-East Asia Symposium on Nano Information Technology and Reliability (NASNIT), Macao, pp. 144–149, 24–26 Oct 2011. doi:10.1109/NASNIT.2011.6111137

  80. Jiehong, K., Ma, M.: Image Thresholding Segmentation Based on Frog Leaping Algorithm and Ostu Method. Yunnan University (Natural Science Edition), pp. 634–640 (2012)

    Google Scholar 

  81. Liu, J., Li, Z., Hu, X., Chen, Y.: Multiobjective optimization shuffled frog-leaping biclustering. In: IEEE International Conference on Bioinformatics and Biomedicine Workshops, Atlanta, pp. 151–156, 12–15 Nov 2011. doi:10.1109/BIBMW.2011.6112368

  82. Bhaduri, A., Bhaduri, A.: Color image segmentation using clonal selection-based shuffled frog leaping algorithm. In: International Conference on Advances in Recent Technologies in Communication and Computing, ARTCom ‘09. Kottayam, Kerala, pp. 517–520, 27–28 Oct 2009. doi:10.1109/ARTCom.2009.115

  83. Couceiro, M.S., Luz, J.M.A., Figueiredo, C.M., Ferreira, N.M.F., Dias, G.: Parameter estimation for a mathematical model of the golf putting. In WACI’10, Workshop Applications of Computational Intelligence ISEC-IPC, Coimbra, Portugal, pp. 1–8, 2 Dec 2010 (2010a)

    Google Scholar 

  84. Couceiro, M.S., Ferreira, N.M.F., Machado, J.A.T.: Application of fractional algoritms in the control of a robotic bird. J. Commun. Nonlinear Sci. Numer. Simul. (Special Issue) 15(4), 895–910 (2010b)

    Google Scholar 

  85. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: 6th Symposium on Micro Machine and Human Science, Nagoya, pp. 39–43, 4–6 Oct 1995. doi:10.1109/MHS.1995.494215

  86. Kennedy, J., Eberhart, R. C. (1995). Particle swarm optimization. In IEEE International Conference Neural Network, 27 Nov–01 Dec 1995, Perth WA, pp. 1942–1948 (2005). doi:10.1109/ICNN.1995.488968

  87. Jiang, M., Luo, Y.P., Yang, S.Y.: Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Inf. Process. Lett. 102(1), 8–16 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  88. Fan, J., Han, M., Wang, J.: Single point iterative weighted fuzzy C-means clustering algorithm for remote sensing image segmentation. Pattern Recogn. 42, 2527–2540 (2009)

    Article  MATH  Google Scholar 

  89. Horng, M.H.: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation. Expert Syst. Appl. 38(11), 13785–13791 (2011)

    Google Scholar 

  90. Ghamisi, P., Couceiro, M.S., Benediktsson, J.A., Ferreira, M.F.N.: An efficient method for segmentation of images based on fractional calculus and natural selection. Expert Syst. Appl. 39(16), 12407–12417 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fayçal Hamdaoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hamdaoui, F., Sakly, A., Mtibaa, A. (2015). An Efficient Multi Level Thresholding Method for Image Segmentation Based on the Hybridization of Modified PSO and Otsu’s Method. In: Azar, A., Vaidyanathan, S. (eds) Computational Intelligence Applications in Modeling and Control. Studies in Computational Intelligence, vol 575. Springer, Cham. https://doi.org/10.1007/978-3-319-11017-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11017-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11016-5

  • Online ISBN: 978-3-319-11017-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics