Abstract
Traditional sparse representation algorithms usually operate in a single Euclidean space. This paper leverages a self-explanatory reformulation of sparse representation, i.e., linking the learned dictionary atoms with the original feature spaces explicitly, to extend simultaneous dictionary learning and sparse coding into reproducing kernel Hilbert spaces (RKHS). The resulting single-view self-explanatory sparse representation (SSSR) is applicable to an arbitrary kernel space and has the nice property that the derivatives with respect to parameters of the coding are independent of the chosen kernel. With SSSR, multiple-view self-explanatory sparse representation (MSSR) is proposed to capture and combine various salient regions and structures from different kernel spaces. This is equivalent to learning a nonlinear structured dictionary, whose complexity is reduced by learning a set of smaller dictionary blocks via SSSR. SSSR and MSSR are then incorporated into a spatial pyramid matching framework and developed for image classification. Extensive experimental results on four benchmark datasets, including UIUC-Sports, Scene 15, Caltech-101, and Caltech-256, demonstrate the effectiveness of our proposed algorithm.
Chapter PDF
Similar content being viewed by others
References
Bo, L., Sminchisescu, C.: Efficient match kernel between sets of features for visual recognition. In: Proceedings of Advances in Neural Information Processing Systems, vol. 2, pp. 135–143. The MIT Press (2009)
Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3), 27:1–27:27 (2011)
Elhamifar, E., Vidal, R.: Sparse subspace clustering: Algorithm, theory, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(11), 2765–2781 (2013)
Gao, S., Tsang, I.W.-H., Chia, L.-T.: Kernel sparse representation for image classification and face recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 1–14. Springer, Heidelberg (2010)
Gao, S., Tsang, I.W.H., Chia, L.T.: Sparse representation with kernels. IEEE Transactions on Image Processing 22(2), 423–434 (2013)
Gao, S., Tsang, I.H., Chia, L.T.: Laplacian sparse coding, hypergraph laplacian sparse coding, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(1), 92–104 (2013)
van Gemert, J.C., Veenman, C.J., Smeulders, A.W., Geusebroek, J.M.: Visual word ambiguity. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(7), 1271–1283 (2010)
van Gemert, J.C., Veenman, C.J., Smeulders, A.W., Geusebroek, J.M.: Visual word ambiguity. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(7), 1271–1283 (2010)
Gönen, M., Alpaydın, E.: Multiple kernel learning algorithms. Journal of Machine Learning Research 12, 2211–2268 (2011)
Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. Technical Report 7694, California Institute of Technology (2007)
Koniusz, P., Yan, F., Mikolajczyk, K.: Comparison of mid-level feature coding approaches and pooling strategies in visual concept detection. Computer Vision and Image Understanding 117(5), 479–492 (2013)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the 19th CVPR, vol. 2, pp. 2169–2178. IEEE (2006)
Lee, H., Battle, A., Raina, R., Ng, A.: Efficient sparse coding algorithms. In: Proceedings of Advances in Neural Information Processing Systems, pp. 801–808. MIT Press (2006)
Li, F.F., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In: Workshop of the 17th CVPR, vol. 12, p. 178. IEEE (2004)
Li, L.J., Li, F.F.: What, where and who? classifying events by scene and object recognition. In: Proceedings of the 11th ICCV, pp. 1–8. IEEE (2007)
Liu, B.D., Wang, Y.X., Bin, S., Zhang, Y.J., Wang, Y.J.: Blockwise coordinate descent schemes for sparse representation. In: Proceedings of the 39th ICASSP, pp. 5304–5308. IEEE (2014)
Liu, B.D., Wang, Y.X., Shen, B., Zhang, Y.J., Wang, Y.J., Liu, W.F.: Self-explanatory convex sparse representation for image classification. In: Proceedings of Systems, Man, and Cybernetics (SMC). pp. 2120–2125. IEEE (2013)
Liu, B.D., Wang, Y.X., Zhang, Y.J., Shen, B.: Learning dictionary on manifolds for image classification. Pattern Recognition 46(7), 1879–1890 (2013)
Liu, B.D., Wang, Y.X., Zhang, Y.J., Zheng, Y.: Discriminant sparse coding for image classification. In: Proceedings of the 37th ICASSP, pp. 2193–2196. IEEE (2012)
Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(1), 171–184 (2013)
Liu, W., Tao, D.: Multiview hessian regularization for image annotation. IEEE Transactions on Image Processing 22(7), 2676–2687 (2013)
Liu, W., Tao, D., Cheng, J., Tang, Y.: Multiview hessian discriminative sparse coding for image annotation. Computer Vision and Image Understanding 118, 50–60 (2014)
Nguyen, H.V., Patel, V.M., Nasrabadi, N.M., Chellappa, R.: Kernel dictionary learning. In: Proceedings of the 37th ICASSP, pp. 2021–2024. IEEE (2012)
Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010)
Schölkopf, B., Smola, A., Müller, K.: Kernel principal component analysis. In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997)
Schölkopf, B., Herbrich, R., Smola, A.J.: A generalized representer theorem. In: Helmbold, D.P., Williamson, B. (eds.) COLT 2001 and EuroCOLT 2001. LNCS (LNAI), vol. 2111, pp. 416–426. Springer, Heidelberg (2001)
Shen, B., Hu, W., Zhang, Y., Zhang, Y.J.: Image inpainting via sparse representation. In: Proceedings of the 34th ICASSP, pp. 697–700. IEEE (2009)
Shen, B., Si, L.: Non-negative matrix factorization clustering on multiple manifolds. In: Proceedings of the 24th AAAI, pp. 575–580. IEEE (2010)
Shen, B., Si, L., Ji, R., Liu, B.: Robust nonnegative matrix factorization via l_1 norm regularization. arXiv preprint arXiv:1204.2311 (2012)
Tan, H., Cheng, B., Feng, J., Feng, G., Wang, W., Zhang, Y.J.: Low-n-rank tensor recovery based on multi-linear augmented lagrange multiplier method. Neurocomputing 119, 144–152 (2013)
Tan, H., Cheng, B., Wang, W., Zhang, Y.J., Ran, B.: Tensor completion via a multi-linear low-n-rank factorization model. Neurocomputing 133, 161–169 (2014)
Thiagarajan, J., Ramamurthy, K., Spanias, A.: Multiple kernel sparse representations for supervised and unsupervised learning. IEEE Transactions on Image Processing 23(7), 2905–2915 (2014)
Vedaldi, A., Zisserman, A.: Sparse kernel approximations for efficient classification and detection. In: Proceedings of the 25th CVPR, pp. 2320–2327. IEEE (2012)
Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: Proceedings of the 23rd CVPR, pp. 3360–3367. IEEE (2010)
Wang, Y.X., Gui, L.Y., Zhang, Y.J.: Neighborhood preserving non-negative tensor factorization for image representation. In: Proceedings of the 37th ICASSP, pp. 3389–3392. IEEE (2012)
Wang, Y.X., Zhang, Y.J.: Image inpainting via weighted sparse non-negative matrix factorization. In: Proceedings of the 18th ICIP, pp. 3409–3412. IEEE (2011)
Wang, Y.X., Zhang, Y.J.: Nonnegative matrix factorization: a comprehensive review. IEEE Transactions on Knowledge and Data Engineering 25(6), 1336–1353 (2013)
Wu, J., Rehg, J.M.: Beyond the euclidean distance: Creating effective visual codebooks using the histogram intersection kernel. In: Proceedings of the 12th ICCV, pp. 630–637. IEEE (2009)
Wu, Y., Shen, B., Ling, H.: Visual tracking via online non-negative matrix factorization. IEEE Transactions on Circuits and Systems for Video Technology 24(3), 374–383 (2014)
Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: Proceedings of the 22nd CVPR, pp. 1794–1801. IEEE (2009)
Yang, M., Zhang, L., Shiu, S.K., Zhang, D.: Robust kernel representation with statistical local features for face recognition. IEEE Transactions on Neural Networks and Learning Systems 24(6), 900–912 (2013)
Yuan, X.T., Yan, S.: Visual classification with multi-task joint sparse representation. In: Proceedings of the 23th CVPR, pp. 3493–3500. IEEE (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Liu, BD., Wang, YX., Shen, B., Zhang, YJ., Hebert, M. (2014). Self-explanatory Sparse Representation for Image Classification. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8690. Springer, Cham. https://doi.org/10.1007/978-3-319-10605-2_39
Download citation
DOI: https://doi.org/10.1007/978-3-319-10605-2_39
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10604-5
Online ISBN: 978-3-319-10605-2
eBook Packages: Computer ScienceComputer Science (R0)