Nothing Special   »   [go: up one dir, main page]

Skip to main content

Reducing Multidimensional Data

  • Conference paper
Data Warehousing and Knowledge Discovery (DaWaK 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8646))

Included in the following conference series:

Abstract

Our aim is to elaborate a multidimensional database reduction process which will specify aggregated schema applicable over a period of time as well as retains useful data for decision support. Firstly, we describe a multidimensional database schema composed of a set of states. Each state is defined as a star schema composed of one fact and its related dimensions. Each reduced state is defined through reduction operators. Secondly, we describe our experiments and discuss their results. Evaluating our solution implies executing different requests in various contexts: unreduced single fact table, unreduced relational star schema, reduced star schema or reduced snowflake schema. We show that queries are more efficiently calculated within a reduced star schema.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boly, A., Hébrail, G., Goutier, S.: Forgetting Data Intelligently in Data Warehouses. In: Proceedings of the IEEE International Conference on Research, Innovation and Vision for the Future, pp. 220–227. IEEE Press, New York (2007)

    Google Scholar 

  2. Garcia-Molina, H., Labio, W., Yang, J.: Expiring data in a warehouse. In: Gupta, A., Shmueli, O., Widom, J. (eds.) 24th International Conference on Very Large Data Bases (VLDB), pp. 500–511. Morgan Kaufmann (1998)

    Google Scholar 

  3. Golfarelli, M., Maio, D., Rizzi, S.: Conceptual design of data warehouses from E/R schemes. In: Proceedings of the 31st Hawaii Int. Conf. on System Sciences (1998)

    Google Scholar 

  4. Golfarelli, M., Rizzi, S.: A survey on temporal data warehousing. International Journal of Data Warehouse and Mining 5(1), 1–17 (2009)

    Article  Google Scholar 

  5. Iftikhar, N., Pedersen, T.B.: Using a Time Granularity Table for Gradual Granular Data Aggregation. In: Catania, B., Ivanović, M., Thalheim, B. (eds.) ADBIS 2010. LNCS, vol. 6295, pp. 219–233. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Iftikhar, N., Pedersen, T.B.: A rule-based tool for gradual granular data aggregation. In: Song, Cuzzocrea, Davis (eds.) Proceedings of DOLAP 2011, pp. 1–8. ACM (2011)

    Google Scholar 

  7. Kimball, R.: The Data Warehouse Toolkit: Practical Techniques for Building Dimensional Data Warehouses. John Wiley & Sons, USA (1996)

    Google Scholar 

  8. Last, M.,, Maimon, O.: Automated dimensionality reduction of data warehouses. In: Jeusfeld, M.A., Shu, H., Staudt, M., Vossen, G. (eds.) Proceedings of DMDW 2010. CEUR Workshop Proceedings, vol. 28, p. 7. CEUR-WS.org (2000)

    Google Scholar 

  9. Okun, O., Priisalu, H.: Unsupervised data reduction. Signal Processing 87(9), 2260–2267 (2007)

    Article  MATH  Google Scholar 

  10. Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Algebraic and graphic languages for OLAP manipulations. International Journal of Data Warehouse and Mining (4), 17–46 (2008)

    Google Scholar 

  11. Skyt, J., Jensen, C.S., Pedersen, T.B.: Specification-based data reduction in dimensional data warehouses. Information System 33(1), 36–63 (2008)

    Article  Google Scholar 

  12. Udo, I.J., Afolabi, B.: Hybrid Data Reduction Technique for Classification of Transaction Data. Journal of Computer Science and Engineering 6(2), 12–16 (2011)

    Google Scholar 

  13. Wang, X., Bettini, C., Brodsky, A., Jajodia, S.: Logical Design for Temporal Databases with Multiple Granularities. ACM Trans. Database Syst. 22(2), 115–170 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Atigui, F., Ravat, F., Song, J., Zurfluh, G. (2014). Reducing Multidimensional Data. In: Bellatreche, L., Mohania, M.K. (eds) Data Warehousing and Knowledge Discovery. DaWaK 2014. Lecture Notes in Computer Science, vol 8646. Springer, Cham. https://doi.org/10.1007/978-3-319-10160-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10160-6_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10159-0

  • Online ISBN: 978-3-319-10160-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics