Nothing Special   »   [go: up one dir, main page]

Skip to main content

Online Recognition of Fixations, Saccades, and Smooth Pursuits for Automated Analysis of Traffic Hazard Perception

  • Conference paper
Artificial Neural Networks

Part of the book series: Springer Series in Bio-/Neuroinformatics ((SSBN,volume 4))

Abstract

Complex and hazardous driving situations often arise with the delayed perception of traffic objects. To automatically detect whether such objects have been perceived by the driver, there is a need for techniques that can reliably recognize whether the driver’s eyes have fixated or are pursuing the hazardous object. A prerequisite for such techniques is the reliable recognition of fixations, saccades, and smooth pursuits from raw eye tracking data. This chapter addresses the challenge of analyzing the driver’s visual behavior in an adaptive and online fashion to automatically distinguish between fixation clusters, saccades, and smooth pursuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berg, D.J., Boehnke, S.E., Marino, R.A., Munoz, D.P., Itti, L.: Free viewing of dynamic stimuli by humans and monkeys. Journal of Vision 9(5), 1–15 (2009)

    Article  Google Scholar 

  2. Bishop, C.M.: Machine Learning and Pattern Recognition. Springer-Verlag, New York, Inc., Secaucus (2006)

    MATH  Google Scholar 

  3. Blignaut, P.: Fixation identification: The optimum threshold for a dispersion algorithm. Attention, Perception, & Psychophysics 71(4), 881–895 (2009)

    Article  Google Scholar 

  4. Buswell, G.T.: How people look at pictures. University of Chicago Press, Chicago (1935)

    Google Scholar 

  5. Berger, C., Winkels, M., Lischke, A., Höppner, J.: GazeAlyze: A MATLAB toolbox for the analysis of eye movement data. Behavior Research Methods 44(2), 404–419 (2012)

    Article  Google Scholar 

  6. Camilli, M., Nacchia, R., Terenzi, M., Di Nocera, F.: Astef: A simple tool for examining fixations. Behavior Research Methods 40, 373–382 (2008)

    Article  Google Scholar 

  7. Cornsweet, T.: Visual perception. Academic Press (2012)

    Google Scholar 

  8. Chapman, P.R., Underwood, G.: Visual search of driving situations: Danger and experience. Perception London 27, 951–964 (1998)

    Article  Google Scholar 

  9. Chapman, P., Underwood, G., Roberts, K.: Visual search patterns in trained and untrained novice drivers. Transportation Research Part F: Traffic Psychology and Behaviour 5(2), 157–167 (2002)

    Article  Google Scholar 

  10. Duchowski, A.: Eye tracking methodology: Theory and practice. Springer, London (2007)

    Google Scholar 

  11. Eyetellect. GazeTracker, http://www.eyetellect.com/gazetracker/

  12. Ferrera, V.P.: Task-dependent modulation of the sensorimotor transformation for smooth pursuit eye movements. Journal of Neurophysiology 84(6), 2725–2738 (2000)

    Google Scholar 

  13. Forney Jr., G.D.: The viterbi algorithm. Proceedings of the IEEE 61(3), 268–278 (1973)

    Article  MathSciNet  Google Scholar 

  14. Fletcher, L., Zelinsky, A.: Driver inattention detection based on eye gaze-road event correlation. The International Journal of Robotics Research 28(6), 774–801 (2009)

    Article  Google Scholar 

  15. Gitelman, D.R.: ILAB: A program for postexperimental eye movement analysis. Behavioral Research Methods, Instruments and Computers 34(4), 605–612 (2002)

    Article  Google Scholar 

  16. Hayhoe, M., Ballard, D.: Eye movements in natural behavior. Trends in Cognitive Science 9(4), 188–194 (2005)

    Article  Google Scholar 

  17. Henderson, J.M., Brockmole, J.R., Castelhano, M.S., Mack, M.: Visual saliency does not account for eye movements during visual search in real-world scenes. In: Eye movements: A Window on Mind and Brain, pp. 537–562 (2007)

    Google Scholar 

  18. Hamel, J., De Beukelear, S., Kraft, A., Ohl, S., Audebert, H.J., Brandt, S.A.: Age-related changes in visual exploratory behavior in a natural scene setting. Frontiers in Psychology 4(339) (2013)

    Google Scholar 

  19. Horswill, M.S., Marrington, S.A., McCullough, C.M., Wood, J., Pachana, N.A., McWilliam, J., Raikos, M.K.: The hazard perception ability of older drivers. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences 63(4), P212–P218 (2008)

    Google Scholar 

  20. Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., Van de Weijer, J.: Eye tracking: A comprehensive guide to methods and measures. Oxford University Press (2011)

    Google Scholar 

  21. Ho, G., Scialfa, C.T., Caird, J.K., Graw, T.: Visual search for traffic signs: The effects of clutter, luminance, and aging. Human Factors: The Journal of the Human Factors and Ergonomics Society 43(2), 194–207 (2001)

    Article  Google Scholar 

  22. Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research 40(10-12), 1489–1506 (2000)

    Article  Google Scholar 

  23. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  24. Itti, L.: Quantifying the contribution of low-level saliency to human eye movements in dynamic scenes. Visual Cognition 12(6), 1093–1123 (2005)

    Article  Google Scholar 

  25. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)

    Book  Google Scholar 

  26. Kasneci, E.: Towards the Automated Recognition of Assistance Need for Drivers with Impaired Visual Field. PhD thesis, University of Tübingen, Wilhelmstr. 32, 72074 Tübingen (2013)

    Google Scholar 

  27. Konstantopoulos, P., Chapman, P., Crundall, D.: Exploring the ability to identify visual search differences when observing drivers’ eye movements. Transportation Research Part F: Traffic Psychology and Behaviour 15(3), 378–386 (2012)

    Article  Google Scholar 

  28. Komogortsev, O.V., Jayarathna, S., Koh, D.H., Gowda, S.M.: Qualitative and quantitative scoring and evaluation of the eye movement classification algorithms. In: Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications, ETRA 2010, pp. 65–68. ACM, New York (2010)

    Google Scholar 

  29. Komogortsev, O.V., Karpov, A.: Automated classification and scoring of smooth pursuit eye movements in the presence of fixations and saccades. Behavior Research Methods 45, 203–215 (2013)

    Article  Google Scholar 

  30. Kasneci, E., Kasneci, G., Kübler, T.C., Rosenstiel, W.: The applicability of probabilistic methods to the online recognition of fixations and saccades in dynamic scenes. In: Proceedings of the Symposium on Eye Tracking Research and Applications, ETRA 2014, pp. 323–326. ACM, New York (2014)

    Chapter  Google Scholar 

  31. Kübler, T.C., Kasneci, E., Rosenstiel, W., Schiefer, U., Nagel, K., Papageorgiou, E.: Stress-indicators and exploratory gaze for the analysis of hazard perception in patients with visual field loss. Transportation Research Part F: Traffic Psychology and Behaviour 24, 231–243 (2014)

    Article  Google Scholar 

  32. Kasneci, E., Sippel, K., Aehling, K., Heister, M., Rosenstiel, W., Schiefer, U., Papageorgiou, E.: Driving with Binocular Visual Field Loss? A Study on a Supervised On-Road Parcours with Simultaneous Eye and Head Tracking. PLoS ONE 9(2), e87470 (2014)

    Google Scholar 

  33. Land, M.F.: Vision, eye movements, and natural behavior. Visual Neuroscience 26(1), 51–62 (2009)

    Article  Google Scholar 

  34. Land, M.F., Tatler, B.W.: Looking and acting: vision and eye movements in natural behaviour. Oxford University Press (2009)

    Google Scholar 

  35. Leigh, R.J., Zee, D.S.: The neurology of eye movements. Oxford University Press (2006)

    Google Scholar 

  36. Markoff, J.: Google cars drive themselves, in traffic. The New York Times 10, A1 (2010)

    Google Scholar 

  37. McConkie, G.W.: Evaluating and reporting data quality in eye movement research. Behavior Research Methods & Instrumentation 13(2), 97–106 (1981)

    Article  Google Scholar 

  38. Maltz, M., Shinar, D.: Eye movements of younger and older drivers. Human Factors: The Journal of the Human Factors and Ergonomics Society 41(1), 15–25 (1999)

    Article  Google Scholar 

  39. Maltz, M., Shinar, D.: Imperfect in-vehicle collision avoidance warning systems can aid drivers. Human Factors: The Journal of the Human Factors and Ergonomics Society 46(2), 357–366 (2004)

    Article  Google Scholar 

  40. Munn, S.M., Stefano, L., Pelz, J.B.: Fixation-identification in dynamic scenes: comparing an automated algorithm to manual coding. In: Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization, APGV 2008, pp. 33–42. ACM, New York (2008)

    Google Scholar 

  41. Minka, T., Winn, J.M., Guiver, J.P., Knowles, D.A.: Infer.NET 2.5. Microsoft Research Cambridge (2012), http://research.microsoft.com/infernet

  42. Nagayama, Y.: Role of visual perception in driving. IATSS Research 2, 64–73 (1978)

    Google Scholar 

  43. Nuthmann, A., Henderson, J.M.: Object-based attentional selection in scene viewing. Journal of Vision 10(8), 20 (2010)

    Article  Google Scholar 

  44. Noton, D., Stark, L.W.: Eye movements and visual perception. Scientific American 224(6), 34–43 (1971)

    Google Scholar 

  45. Pradhan, A.K., Hammel, K.R., DeRamus, R., Pollatsek, A., Noyce, D.A., Fisher, D.L.: Using Eye Movements To Evaluate Effects of Driver Age on Risk Perception in a Driving Simulator. Human Factors: The Journal of the Human Factors and Ergonomics Society 47(4), 840–852 (2005)

    Article  Google Scholar 

  46. Pomerleau, D.A.: ALVINN: An autonomous land vehicle in a neural network. In: Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems 1, pp. 305–313. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  47. Privitera, C.M., Stark, L.W.: Algorithms for defining visual regions-of-interest: Comparison with eye fixations. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(9), 970–982 (2000)

    Article  Google Scholar 

  48. Privitera, C.M., Stark, L.W.: Scanpath theory, attention, and image processing algorithms for predicting human eye fixations. In: Itti, L., Rees, G., Tsotsos, J. (eds.) Neurobiology of Attention, pp. 269–299 (2005)

    Google Scholar 

  49. Schütz, A.C., Braun, D.I., Gegenfurtner, K.R.: Eye movements and perception: a selective review. Journal of Vision 11(9), 1–30 (2011)

    Article  Google Scholar 

  50. Santella, A., De Carlo, D.: Robust clustering of eye movement recordings for quantification of visual interest. In: Proceedings of the 2004 Symposium on Eye Tracking Research & Applications, ETRA 2004, pp. 27–34. ACM, New York (2004)

    Chapter  Google Scholar 

  51. Seeing Machines Inc. faceLab 5, http://www.seeingmachines.com/product/facelab/

  52. SensoMotoric Instruments GmbH. SMI BeGaze Eye Tracking Analysis Software, http://www.smivision.com/en/gaze-and-eye-tracking-systems/products/begaze-analysis-software.html

  53. Salvucci, D., Goldberg, J.: Identifying fixations and saccades in eye-tracking protocols. In: Proceedings of the 2000 Symposium on Eye Tracking Tesearch & Applications, ETRA 2000, pp. 71–78. ACM, New York (2000)

    Google Scholar 

  54. Sauter, D., Martin, B.J., Di Renzo, N., Vomscheid, C.: Analysis of eye tracking movements using innovations generated by a Kalman filter. Medical and biological Engineering and Computing 29(1), 63–69 (1991)

    Article  Google Scholar 

  55. Summala, H., Nieminen, T., Punto, M.: Maintaining lane position with peripheral vision during in-vehicle tasks. Human Factors: The Journal of the Human Factors and Ergonomics Society 38(3), 442–451 (1996)

    Article  Google Scholar 

  56. SR Research Ltd. EyeLink 1000 and EyeLink II, http://www.sr-research.com/index.html .

  57. Shic, F., Scassellati, B., Chawarska, K.: The incomplete fixation measure. In: Proceedings of the 2008 Symposium on Eye Tracking Research & Applications, ETRA 2008, pp. 111–114. ACM, New York (2008)

    Google Scholar 

  58. Turano, K.A., Geruschat, D.R., Baker, F.H.: Oculomotor strategies for the direction of gaze tested with a real-world activity. Vision Research 43, 333–346 (2003)

    Article  Google Scholar 

  59. Tafaj, E., Hempel, S., Heister, M., Aehling, K., Schaeffel, F., Dietzsch, J., Rosenstiel, W., Schiefer, U.: A New Method for Assessing the Exploratory Field of View (EFOV). In: Stacey, D., SoléCasals, J., Fred, A.L.N., Gamboa, H. (eds.) HEALTHINF 2013, pp. 5–11. SciTePress (2013)

    Google Scholar 

  60. Tatler, B.W., Hayhoe, M.M., Land, M.F., Ballard, D.H.: Eye guidance in natural vision: reinterpreting salience. Journal of Vision 11(5), 5 (2011)

    Article  Google Scholar 

  61. Tafaj, E., Kübler, T.C., Kasneci, G., Rosenstiel, W., Bogdan, M.: Online classification of eye tracking data for automated analysis of traffic hazard perception. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds.) ICANN 2013. LNCS, vol. 8131, pp. 442–450. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  62. Tafaj, E., Kübler, T., Peter, J., Schiefer, U., Bogdan, M., Rosenstiel, W.: Vishnoo - an open-source software for vision research. In: Proceedings of the 24th IEEE International Symposium on Computer-Based Medical Systems, CBMS 2011, pp. 1–6. IEEE (2011)

    Google Scholar 

  63. Tafaj, E., Kasneci, G., Rosenstiel, W., Bogdan, M.: Bayesian online clustering of eye movement data. In: Proceedings of the Symposium on Eye Tracking Research & Applications, ETRA 2012, pp. 285–288. ACM, New York (2012)

    Google Scholar 

  64. Tobii Technology AB. Eye Tracking for Research and Analysis, http://www.tobii.com/en/eye-tracking-research/global/ .

  65. Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., et al.: Autonomous driving in urban environments: Boss and the urban challenge. Journal of Field Robotics 25(8), 425–466 (2008)

    Article  Google Scholar 

  66. Underwood, G., Chapman, P., Bowden, K., Crundall, D.: Visual search while driving: skill and awareness during inspection of the scene. Transportation Research Part F: Traffic Psychology and Behaviour 5(2), 87–97 (2002)

    Article  Google Scholar 

  67. Urruty, T., Lew, S., Ihadaddene, N., Simovici, D.A.: Detecting eye fixations by projection clustering. In: ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP), vol. 3(4), pp. 1–20 (2007)

    Google Scholar 

  68. Underwood, G., Phelps, N., Wright, C., Van Loon, E., Galpin, A.: Eye fixation scanpaths of younger and older drivers in a hazard perception task. Ophthalmic and Physiological Optics 25(4), 346–356 (2005)

    Article  Google Scholar 

  69. Vidal, M., Bulling, A., Gellersen, H.: Detection of smooth pursuits using eye movement shape features. In: Proceedings of the Symposium on Eye Tracking Research and Applications, ETRA 2012, pp. 177–180. ACM, New York (2012)

    Google Scholar 

  70. Velichkovsky, B.M., Rothert, A., Kopf, M., Dornhöfer, S.M., Joos, M.: Towards an express-diagnostics for level of processing and hazard perception. Transportation Research Part F: Traffic Psychology and Behaviour 5(2), 145–156 (2002)

    Article  Google Scholar 

  71. Widdel, H.: Operational problems in analysing eye movements. In: Gale, A.G., Johnson, F. (eds.) Theoretical and Applied Aspects of Eye Movement Research Selected/Edited Proceedings of The Second European Conference on Eye Movements. Advances in Psychology, vol. 22, pp. 21–29. North-Holland (1984)

    Google Scholar 

  72. Wooding, D.S.: Fixation maps: quantifying eye-movement traces. In: Proceedings of the Eye Tracking Research and Applications, pp. 31–36 (2002)

    Google Scholar 

  73. Yarbus, A.L.: Eye movements and vision. Plenum Press, New York (1967)

    Book  Google Scholar 

  74. Zeeb, E.: Daimler’s New Full-Scale, High-dynamic Driving Simulator–A Technical Overview. In: Proceedings of the Driving Simulator Conference Europe, pp. 157–165. Institut national de recherche sur les transports et leur sécurité (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enkelejda Kasneci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kasneci, E., Kasneci, G., Kübler, T.C., Rosenstiel, W. (2015). Online Recognition of Fixations, Saccades, and Smooth Pursuits for Automated Analysis of Traffic Hazard Perception. In: Koprinkova-Hristova, P., Mladenov, V., Kasabov, N. (eds) Artificial Neural Networks. Springer Series in Bio-/Neuroinformatics, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-09903-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09903-3_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09902-6

  • Online ISBN: 978-3-319-09903-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics