Nothing Special   »   [go: up one dir, main page]

Skip to main content

Complexity of Dense Bicluster Editing Problems

  • Conference paper
Computing and Combinatorics (COCOON 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8591))

Included in the following conference series:

Abstract

Given a density measure Π, an undirected graph G and a nonnegative integer k, a Π-CLUSTER EDITING problem is to decide whether G can be modified into a graph where all connected components are Π-cliques, by at most k edge modifications. Previous studies have been conducted on the complexity and fixed-parameter tractability (FPT) of Π-CLUSTER EDITING based on several different density measures. However, whether these conclusions hold on bipartite graphs is yet to be examined. In this paper, we focus on three different density measures for bipartite graphs: (1) having at most s missing edges for each vertex (s-biplex), (2) having average degree at least |V| − s (average-s-biplex) and (3) having at most s missing edges within a single disjoint component (s-defective bicliques). First, the NP-completeness of the three problems is discussed and afterwards we show all these problems are fixed-parameter tractable with respect to the parameter (s,k).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abu-Khzam, F.N.: The multi-parameterized cluster editing problem. In: Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp. 284–294. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Ailon, N., Avigdor-Elgrabli, N., Liberty, E.: An improved algorithm for bipartite correlation clustering. arXiv preprint arXiv:1012.3011 (2010)

    Google Scholar 

  3. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1-3), 89–113 (2004)

    Article  MATH  Google Scholar 

  4. Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: Going weighted: Parameterized algorithms for cluster editing. Theoretical Computer Science 410(52), 5467–5480 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cao, Y., Chen, J.: Cluster editing: Kernelization based on edge cuts. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 60–71. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Chen, J., Meng, J.: A 2k kernel for the cluster editing problem. Journal of Computer and System Sciences 78(1), 211–220 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cheng, Y., Church, G.M.: Biclustering of expression data. In: ISMB, vol. 8, pp. 93–103 (2000)

    Google Scholar 

  8. Fellows, M., Langston, M., Rosamond, F., Shaw, P.: Efficient parameterized preprocessing for cluster editing. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 312–321. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Fellows, M.R., Downey, R.G.: Parameterized complexity (1999)

    Google Scholar 

  10. Gonçalves, J.P., Madeira, S.C., Oliveira, A.L.: Biggests: Integrated environment for biclustering analysis of time series gene expression data. BMC Research Notes 2(1), 124 (2009)

    Article  Google Scholar 

  11. Guo, J.: A more effective linear kernelization for cluster editing. Theoretical Computer Science 410(8), 718–726 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guo, J., Hüffner, F., Komusiewicz, C., Zhang, Y.: Improved algorithms for bicluster editing. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 445–456. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Guo, J., Kanj, I.A., Komusiewicz, C., Uhlmann, J.: Editing graphs into disjoint unions of dense clusters. Algorithmica 61(4), 949–970 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: A more relaxed model for graph-based data clustering: S-plex cluster editing. SIAM Journal on Discrete Mathematics 24(4), 1662–1683 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Harpaz, R., Perez, H., Chase, H.S., Rabadan, R., Hripcsak, G., Friedman, C.: Biclustering of adverse drug events in the fda’s spontaneous reporting system. Clinical Pharmacology & Therapeutics 89(2), 243–250 (2010)

    Article  Google Scholar 

  16. Niedermeier, R.: Invitation to fixed-parameter algorithms, vol. 3. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  17. Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept. Journal of Mathematical Sociology 6(1), 139–154 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Applied Mathematics 144(1), 173–182 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sun, P., Guo, J., Baumbach, J.: Integrated simultaneous analysis of different biomedical data types with exact weighted bi-cluster editing. Journal of Integrative Bioinformatics 9(2), 197 (2012)

    Google Scholar 

  20. van Zuylen, A.: Deterministic approximation algorithms for ranking and clustering problems. Technical Report 1431. School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY (2005)

    Google Scholar 

  21. Wittkop, T., Baumbach, J., Lobo, F.P., Rahmann, S.: Large scale clustering of protein sequences with force-a layout based heuristic for weighted cluster editing. BMC Bioinformatics 8(1), 396 (2007)

    Article  Google Scholar 

  22. Wittkop, T., Emig, D., Lange, S., Rahmann, S., Albrecht, M., Morris, J.H., Böcker, S., Stoye, J., Baumbach, J.: Partitioning biological data with transitivity clustering. Nature Methods 7(6), 419–420 (2010)

    Article  Google Scholar 

  23. Wittkop, T., Emig, D., Truss, A., Albrecht, M., Böcker, S., Baumbach, J.: Comprehensive cluster analysis with transitivity clustering. Nature Protocols 6(3), 285–295 (2011)

    Article  Google Scholar 

  24. Yu, H., Paccanaro, A., Trifonov, V., Gerstein, M.: Predicting interactions in protein networks by completing defective cliques. Bioinformatics 22(7), 823–829 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sun, P., Guo, J., Baumbach, J. (2014). Complexity of Dense Bicluster Editing Problems. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds) Computing and Combinatorics. COCOON 2014. Lecture Notes in Computer Science, vol 8591. Springer, Cham. https://doi.org/10.1007/978-3-319-08783-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08783-2_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08782-5

  • Online ISBN: 978-3-319-08783-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics