Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fast Approximate Computations with Cauchy Matrices, Polynomials and Rational Functions

  • Conference paper
Computer Science - Theory and Applications (CSR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8476))

Included in the following conference series:

Abstract

The papers [18], [9], [29], and [28] combine the techniques of the Fast Multipole Method of [15], [8] with the transformations of matrix structures, traced back to [19]. The resulting numerically stable algorithms approximate the solutions of Toeplitz, Hankel, Toeplitz-like, and Hankel-like linear systems of equations in nearly linear arithmetic time, versus the classical cubic time and the quadratic time of the previous advanced algorithms. We extend this progress to decrease the arithmetic time of the known numerical algorithms from quadratic to nearly linear for computations with matrices that have structure of Cauchy or Vandermonde type and for the evaluation and interpolation of polynomials and rational functions. We detail and analyze the new algorithms, and in [21] we extend them further.

Some preliminary results of this paper have been presented at CASC 2013. Our research has been supported by the NSF Grant CC 1116736 and the PSC CUNY Awards 64512–0042 and 65792–0043.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bracewell, R.: The Fourier Transform and Its Applications, 3rd edn. McGraw-Hill, New York (1999)

    Google Scholar 

  2. Börm, S.: Efficient Numerical Methods for Non-local Operators: \(\mathcal H^2\)-Matrix Compression, Algorithms and Analysis. European Math. Society (2010)

    Google Scholar 

  3. Bella, T., Eidelman, Y., Gohberg, I., Olshevsky, V.: Computations with Quasiseparable Polynomials and Matrices. Theoretical Computer Science 409(2), 158–179 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bini, D.A., Fiorentino, G.: Design, Analysis, and Implementation of a Multiprecision Polynomial Rootfinder. Numer. Algs. 23, 127–173 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bini, D., Pan, V.Y.: Polynomial and Matrix Computations, Volume 1: Fundamental Algorithms. Birkhäuser, Boston (1994)

    Book  Google Scholar 

  6. Barba, L.A., Yokota, R.: How Will the Fast Multipole Method Fare in Exascale Era? SIAM News 46(6), 1–3 (2013)

    Google Scholar 

  7. Chandrasekaran, S., Dewilde, P., Gu, M., Lyons, W., Pals, T.: A Fast Solver for HSS Representations via Sparse Matrices. SIAM J. Matrix Anal. Appl. 29(1), 67–81 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Carrier, J., Greengard, L., Rokhlin, V.: A Fast Adaptive Algorithm for Particle Simulation. SIAM J. Scientific Computing 9, 669–686 (1998)

    Article  MathSciNet  Google Scholar 

  9. Chandrasekaran, S., Gu, M., Sun, X., Xia, J., Zhu, J.: A Superfast Algorithm for Toeplitz Systems of Linear Equations. SIAM J. Matrix Anal. Appl. 29, 1247–1266 (2007)

    Article  MathSciNet  Google Scholar 

  10. Dutt, A., Gu, M., Rokhlin, V.: Fast Algorithms for Polynomial Interpolation, Integration, and Differentiation. SIAM Journal on Numerical Analysis 33(5), 1689–1711 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dewilde, P., van der Veen, A.: Time-Varying Systems and Computations. Kluwer Academic Publishers, Dordrecht (1998)

    Book  MATH  Google Scholar 

  12. Eidelman, Y., Gohberg, I.: A Modification of the Dewilde–van der Veen Method for Inversion of Finite Structured Matrices. Linear Algebra and Its Applications 343, 419–450 (2002)

    Article  MathSciNet  Google Scholar 

  13. Eidelman, Y., Gohberg, I., Haimovici, I.: Separable Type Representations of Matrices and Fast Algorithms. Birkhäuser (2013)

    Google Scholar 

  14. Gohberg, I., Kailath, T., Olshevsky, V.: Fast Gaussian Elimination with Partial Pivoting for Matrices with Displacement Structure. Mathematics of Computation 64, 1557–1576 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Greengard, L., Rokhlin, V.: A Fast Algorithm for Particle Simulation. Journal of Computational Physics 73, 325–348 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gentelman, W., Sande, G.: Fast Fourier Transform for Fun and Profit. Full Joint Comput. Conference 29, 563–578 (1966)

    Google Scholar 

  17. Lipton, R.J., Rose, D., Tarjan, R.E.: Generalized Nested Dissection. SIAM J. on Numerical Analysis 16(2), 346–358 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  18. Martinsson, P.G., Rokhlin, V., Tygert, M.: A Fast Algorithm for the Inversion of Toeplitz Matrices. Comput. Math. Appl. 50, 741–752 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pan, V.Y.: On Computations with Dense Structured Matrices, Math. of Computation, 55(191), 179–190 (1990); Also in Proc. Intern. Symposium on Symbolic and Algebraic Computation (ISSAC 1989), 34–42. ACM Press, New York (1989)

    Google Scholar 

  20. Pan, V.Y.: Structured Matrices and Polynomials: Unified Superfast Algorithms. Birkhäuser/Springer, Boston/New York (2001)

    Book  Google Scholar 

  21. Pan, V.Y.: Transformations of Matrix Structures Work Again II, In: arxiv:1311.3729[math.NA]

    Google Scholar 

  22. Pan, V.Y.: Fast Approximation Algorithms for Computations with Cauchy Matrices and Extensions, in arxiv and Tech. Report TR 201400x, PhD Program in Comp. Sci., Graduate Center, CUNY (2014)

    Google Scholar 

  23. Pan, V.Y., Reif, J.: Fast and Efficient Parallel Solution of Sparse Linear Systems. SIAM J. on Computing 22(6), 1227–1250 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rokhlin, V.: Rapid Solution of Integral Equations of Classical Potential Theory. Journal of Computational Physics 60, 187–207 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  25. Vandebril, R., Van Barel, M., Mastronardi, N.: Matrix Computations and Semiseparable Matrices: Linear Systems, vol. 1. The Johns Hopkins University Press, Baltimore (2007)

    Google Scholar 

  26. Xia, J.: On the Complexity of Some Hierarchical Structured Matrix Algorithms. SIAM J. Matrix Anal. Appl. 33, 388–410 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Xia, J.: Randomized Sparse Direct Solvers. SIAM J. Matrix Anal. Appl. 34, 197–227 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Xia, J., Xi, Y., Cauley, S., Balakrishnan, V.: Superfast and Stable Structured Solvers for Toeplitz Least Squares via Randomized Sampling. SIAM J. Matrix Anal. and Applications 35, 44–72 (2014)

    Article  MathSciNet  Google Scholar 

  29. Xia, J., Xi, Y., Gu, M.: A Superfast Structured Solver for Toeplitz Linear Systems via Randomized Sampling. SIAM J. Matrix Anal. Appl. 33, 837–858 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Pan, V.Y. (2014). Fast Approximate Computations with Cauchy Matrices, Polynomials and Rational Functions. In: Hirsch, E.A., Kuznetsov, S.O., Pin, JÉ., Vereshchagin, N.K. (eds) Computer Science - Theory and Applications. CSR 2014. Lecture Notes in Computer Science, vol 8476. Springer, Cham. https://doi.org/10.1007/978-3-319-06686-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06686-8_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06685-1

  • Online ISBN: 978-3-319-06686-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics