Abstract
The automatic segmentation of human knee cartilage from 3D MR images is a useful yet challenging task due to the thin sheet structure of the cartilage with diffuse boundaries and inhomogeneous intensities. In this paper, we present an iterative multi-class learning method to segment the femoral, tibial and patellar cartilage simultaneously, which effectively exploits the spatial contextual constraints between bone and cartilage, and also between different cartilages. First, based on the fact that the cartilage grows in only certain area of the corresponding bone surface, we extract the distance features of not only to the surface of the bone, but more informatively, to the densely registered anatomical landmarks on the bone surface. Second, we introduce a set of iterative discriminative classifiers that at each iteration, probability comparison features are constructed from the class confidence maps derived by previously learned classifiers. These features automatically embed the semantic context information between different cartilages of interest. Validated on a total of 176 volumes from the Osteoarthritis Initiative (OAI) dataset, the proposed approach demonstrates high robustness and accuracy of segmentation in comparison with existing state-of-the-art MR cartilage segmentation methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Graichen, H., Eisenhart-Rothe, R., Vogl, T., Englmeier, K.H., Eckstein, F.: Quantitative assessment of cartilage status in osteoarthritis by quantitative magnetic resonance imaging. Arthritis Rheumatism (2004)
Folkesson, J., Dam, E., Olsen, O., Pettersen, P., Christiansen, C.: Segmenting articular cartilage automatically using a voxel classification approach. IEEE Trans. Med. Imag. 26(1), 106–115 (2007)
Vincent, G., Wolstenholme, C., Scott, I., Bowes, M.: Fully automatic segmentation of the knee joint using active appearance models. In: Medical Image Analysis for the Clinic: A Grand Challenge (2010)
Fripp, J., Crozier, S., Warfield, S., Ourselin, S.: Automatic segmentation and quantitative analysis of the articular cartilages from magnetic resonance images of the knee. IEEE Trans. Med. Imag. 29(1), 55–64 (2010)
Yin, Y., Zhang, X., Williams, R., Wu, X., Anderson, D., Sonka, M.: Logismos - layered optimal graph image segmentation of multiple objects and surfaces: cartilage segmentation in the knee joint. IEEE Trans. Med. Imag. 29(12), 2023–2037 (2010)
Lee, S., Park, S.H., Shim, H., Yun, I.D., Lee, S.U.: Optimization of local shape and appearance probabilities for segmentation of knee cartilage in 3-d mr images. CVIU 115(12), 1710–1720 (2011)
Li, K., Wu, X., Chen, D., Sonka, M.: Optimal surface segmentation in volumetric images-a graph-theoretic approach. IEEE Trans. PAMI 28(1), 119–134 (2006)
Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3d brain image segmentation. IEEE Trans. PAMI 32, 1744–1757 (2010)
Montillo, A., Shotton, J., Winn, J., Iglesias, J.E., Metaxas, D., Criminisi, A.: Entangled decision forests and their application for semantic segmentation of CT images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 184–196. Springer, Heidelberg (2011)
Ling, H., Zheng, Y., Georgescu, B., Zhou, S.K., Suehling, M.: Hierarchical learning-based automatic liver segmentation. In: CVPR (2008)
Zheng, Y., Barbu, A., Georgescu, M., Scheuring, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans. Med. Imag. 27(11), 1668–1681 (2008)
Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. PAMI 32(12), 2262–2275 (2010)
Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models-their training and application. CVIU 61(1), 38–59 (1995)
Grady, L.: Random walks for image segmentation. IEEE Trans. PAMI 28(11), 1768–1783 (2006)
Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: CVPR, pp. 1297–1304, June 2011
Lepetit, V., Lagger, P., Fua, P.: Randomized trees for real-time keypoint recognition. In: CVPR, vol. 2, pp. 775–781, June 2005
Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Wang, Q., Ou, Y., Julius, A.A., Boyer, K.L., Kim, M.J.: Tracking tetrahymena pyriformis cells using decision trees. In: ICPR, November 2012
Zikic, D., Glocker, B., Konukoglu, E., Shotton, J., Criminisi, A., Ye, D., Demiralp, C., Thomas, O., Das, T., Jena, R., et al.: Context-sensitive classification forests for segmentation of brain tumor tissues. In: MICCAI (2012)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. PAMI 23(11), 1222–1239 (2001)
Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n-d image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006)
Shan, L., Charles, C., Niethammer, M.: Automatic atlas-based three-label cartilage segmentation from mr knee images. In: 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 241–246, January 2012
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Wang, Q., Wu, D., Lu, L., Liu, M., Boyer, K.L., Zhou, S.K. (2014). Semantic Context Forests for Learning-Based Knee Cartilage Segmentation in 3D MR Images. In: Menze, B., Langs, G., Montillo, A., Kelm, M., Müller, H., Tu, Z. (eds) Medical Computer Vision. Large Data in Medical Imaging. MCV 2013. Lecture Notes in Computer Science(), vol 8331. Springer, Cham. https://doi.org/10.1007/978-3-319-05530-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-05530-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05529-9
Online ISBN: 978-3-319-05530-5
eBook Packages: Computer ScienceComputer Science (R0)