Nothing Special   »   [go: up one dir, main page]

Skip to main content

Semantic Context Forests for Learning-Based Knee Cartilage Segmentation in 3D MR Images

  • Conference paper
  • First Online:
Medical Computer Vision. Large Data in Medical Imaging (MCV 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8331))

Included in the following conference series:

Abstract

The automatic segmentation of human knee cartilage from 3D MR images is a useful yet challenging task due to the thin sheet structure of the cartilage with diffuse boundaries and inhomogeneous intensities. In this paper, we present an iterative multi-class learning method to segment the femoral, tibial and patellar cartilage simultaneously, which effectively exploits the spatial contextual constraints between bone and cartilage, and also between different cartilages. First, based on the fact that the cartilage grows in only certain area of the corresponding bone surface, we extract the distance features of not only to the surface of the bone, but more informatively, to the densely registered anatomical landmarks on the bone surface. Second, we introduce a set of iterative discriminative classifiers that at each iteration, probability comparison features are constructed from the class confidence maps derived by previously learned classifiers. These features automatically embed the semantic context information between different cartilages of interest. Validated on a total of 176 volumes from the Osteoarthritis Initiative (OAI) dataset, the proposed approach demonstrates high robustness and accuracy of segmentation in comparison with existing state-of-the-art MR cartilage segmentation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Graichen, H., Eisenhart-Rothe, R., Vogl, T., Englmeier, K.H., Eckstein, F.: Quantitative assessment of cartilage status in osteoarthritis by quantitative magnetic resonance imaging. Arthritis Rheumatism (2004)

    Google Scholar 

  2. Folkesson, J., Dam, E., Olsen, O., Pettersen, P., Christiansen, C.: Segmenting articular cartilage automatically using a voxel classification approach. IEEE Trans. Med. Imag. 26(1), 106–115 (2007)

    Article  Google Scholar 

  3. Vincent, G., Wolstenholme, C., Scott, I., Bowes, M.: Fully automatic segmentation of the knee joint using active appearance models. In: Medical Image Analysis for the Clinic: A Grand Challenge (2010)

    Google Scholar 

  4. Fripp, J., Crozier, S., Warfield, S., Ourselin, S.: Automatic segmentation and quantitative analysis of the articular cartilages from magnetic resonance images of the knee. IEEE Trans. Med. Imag. 29(1), 55–64 (2010)

    Article  Google Scholar 

  5. Yin, Y., Zhang, X., Williams, R., Wu, X., Anderson, D., Sonka, M.: Logismos - layered optimal graph image segmentation of multiple objects and surfaces: cartilage segmentation in the knee joint. IEEE Trans. Med. Imag. 29(12), 2023–2037 (2010)

    Article  Google Scholar 

  6. Lee, S., Park, S.H., Shim, H., Yun, I.D., Lee, S.U.: Optimization of local shape and appearance probabilities for segmentation of knee cartilage in 3-d mr images. CVIU 115(12), 1710–1720 (2011)

    Google Scholar 

  7. Li, K., Wu, X., Chen, D., Sonka, M.: Optimal surface segmentation in volumetric images-a graph-theoretic approach. IEEE Trans. PAMI 28(1), 119–134 (2006)

    Article  Google Scholar 

  8. Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3d brain image segmentation. IEEE Trans. PAMI 32, 1744–1757 (2010)

    Article  Google Scholar 

  9. Montillo, A., Shotton, J., Winn, J., Iglesias, J.E., Metaxas, D., Criminisi, A.: Entangled decision forests and their application for semantic segmentation of CT images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 184–196. Springer, Heidelberg (2011)

    Google Scholar 

  10. Ling, H., Zheng, Y., Georgescu, B., Zhou, S.K., Suehling, M.: Hierarchical learning-based automatic liver segmentation. In: CVPR (2008)

    Google Scholar 

  11. Zheng, Y., Barbu, A., Georgescu, M., Scheuring, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans. Med. Imag. 27(11), 1668–1681 (2008)

    Article  Google Scholar 

  12. Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. PAMI 32(12), 2262–2275 (2010)

    Article  Google Scholar 

  13. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models-their training and application. CVIU 61(1), 38–59 (1995)

    Google Scholar 

  14. Grady, L.: Random walks for image segmentation. IEEE Trans. PAMI 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  15. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: CVPR, pp. 1297–1304, June 2011

    Google Scholar 

  16. Lepetit, V., Lagger, P., Fua, P.: Randomized trees for real-time keypoint recognition. In: CVPR, vol. 2, pp. 775–781, June 2005

    Google Scholar 

  17. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  18. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  19. Wang, Q., Ou, Y., Julius, A.A., Boyer, K.L., Kim, M.J.: Tracking tetrahymena pyriformis cells using decision trees. In: ICPR, November 2012

    Google Scholar 

  20. Zikic, D., Glocker, B., Konukoglu, E., Shotton, J., Criminisi, A., Ye, D., Demiralp, C., Thomas, O., Das, T., Jena, R., et al.: Context-sensitive classification forests for segmentation of brain tumor tissues. In: MICCAI (2012)

    Google Scholar 

  21. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. PAMI 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  22. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n-d image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006)

    Article  Google Scholar 

  23. Shan, L., Charles, C., Niethammer, M.: Automatic atlas-based three-label cartilage segmentation from mr knee images. In: 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 241–246, January 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, Q., Wu, D., Lu, L., Liu, M., Boyer, K.L., Zhou, S.K. (2014). Semantic Context Forests for Learning-Based Knee Cartilage Segmentation in 3D MR Images. In: Menze, B., Langs, G., Montillo, A., Kelm, M., Müller, H., Tu, Z. (eds) Medical Computer Vision. Large Data in Medical Imaging. MCV 2013. Lecture Notes in Computer Science(), vol 8331. Springer, Cham. https://doi.org/10.1007/978-3-319-05530-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05530-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05529-9

  • Online ISBN: 978-3-319-05530-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics