Abstract
This is a pleading for Descriptive Geometry, a subject of basic importance for any engineering education. From the very first, Descriptive Geometry has been a method to study 3D geometry through 2D images thus offering insight into structure and metrical properties of spatial objects, processes and principles. The education in Descriptive Geometry provides a training of the students’ intellectual capability of space perception. Drawings are the guide to geometry but not the main aim.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
It is said that Felix Klein once stated: “Among all mathematicians, geometers have the advantage to see what they are studying.”
- 2.
This textbook has been translated into Spanish, Croatian, Japanese and Chinese.
- 3.
More strictly, it should be called first rhombic dodecahedron. Due to Bilinski [3] there is a second one: In this case the dihedral angle is 144°. This polyhedron is obtained from the triacontahedron, the dual of the icosidodecahedron, by removing two prismatic zones and bringing the remaining pieces together. The author is grateful to H. Martini for pointing his attention to this fact.
References
Bereis, R.: Darstellende Geometrie I. Akademie, Berlin (1964)
Bertoline, G.R., Wiebe, E.W., Miller, C.L., Nasman, L.O.: Engineering Graphics Communication. R.D. Irwin Inc., Chicago (1995)
Bilinski, S.: Über die Rhombenisoeder. Glasnik mat. fiz. i astr. 15, 251–263 (1960)
Brauner, H.: Lehrbuch der konstruktiven Geometrie. Springer, Wien (1986)
Brockhaus, die Enzyklopädie in 24 Bänden. 20. Aufl., F.A. Brockhaus GmbH, Leipzig (2001)
Earle, J.H.: Engineering Design Graphics, 4th edn. Addison-Wesley Publication Company, Reading/Mass, Boston (1983)
Hohenberg, F.: Konstruktive Geometrie in der Technik, 3rd edn. Springer, Wien (1966)
Hohenberg, F.: Die “Géométrie descriptive” von G. Monge im Urteil von C.F. Gauß. Proceedings Internat. Conf. of Descriptive Geometry, Vancouver 1978, p. 143. In Japanese: J. Graphic Sci. Jpn. 23, 27–28 (1978)
Klix, W.-D.: Konstruktive Geometrie, darstellend und analytisch. Fachbuchverlag, Leipzig (2001)
Krames, J.L.: Darstellende und kinematische Geometrie für Maschinenbauer, 2nd edn. Franz Deuticke, Wien (1967)
Monge, G.: Géométrie descriptive. Nouvelle édition. J. Klostermann fils, Paris (1811)
Stachel, H.: Darstellende Geometrie und Graphische Datenverarbeitung. In Encarnação, J.L.W., Hoschek, J., Rix, J. (eds.): Geometrische Verfahren der Graphischen Datenverarbeitung, pp. 168–179, Springer, Berlin (1990)
Stachel, H.: Descriptive geometry, the art of grasping spatial relations. In: Proceedings 6th ICECGDG, vol. 2, pp. 533–535, Tokyo (1994)
Stachel, H.: A way to geometry through descriptive geometry. Appl. Geom. Eng. Graph. 70, 14–19 (2002)
Suzuki, K.: Activities of the Japan Society for Graphic Science—Research and education. J. Geom. Graph. 6(2), 221–229 (2002)
Wunderlich, W.: Darstellende Geometrie I, II. BI-Hochschultaschenbücher Bd. 96, 133, Bibliographisches Institut, Mannheim (1966, 1967)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Stachel, H. (2015). Descriptive Geometry—Vision Guided Spatial Reasoning. In: Cocchiarella, L. (eds) The Visual Language of Technique. Springer, Cham. https://doi.org/10.1007/978-3-319-05350-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-05350-9_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-05349-3
Online ISBN: 978-3-319-05350-9
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)