Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Fractional Strong Metric Dimension of Graphs

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8287))

Abstract

For any two vertices x and y of a graph G, let S{x, y} denote the set of vertices z such that either x lies on a y − z geodesic or y lies on a x − z geodesic. For a function g defined on V(G) and U ⊆ V(G), let g(U) = ∑ x ∈ Ug(x). A function g: V(G) → [0,1] is a strong resolving function of G if g(S{x, y}) ≥ 1, for every pair of distinct vertices x, y of G. The fractional strong metric dimension, sdim f (G), of a graph G is min {g(V(G)): g is a strong resolving function of G}. For any connected graph G of order n ≥ 2, we prove the sharp bounds \(1 \le sdim_f(G) \le \frac{n}{2}\). Indeed, we show that sdim f (G) = 1 if and only if G is a path. If G contains a cut-vertex, then \(sdim_f(G) \le \frac{n-1}{2}\) is the sharp bound. We determine sdim f (G) when G is a tree, a cycle, a wheel, a complete k-partite graph, or the Petersen graph. For any tree T, we prove the sharp inequality sdim f (T + e) ≥ sdim f (T) and show that sdim f (G + e) − sdim f (G) can be arbitrarily large. Lastly, we furnish a Nordhaus-Gaddum-type result: Let G and \(\overline{G}\) (the complement of G) both be connected graphs of order n ≥ 4; it is readily seen that \(sdim_f(G)+sdim_f(\overline{G})=2\) if and only if n = 4; further, we characterize unicyclic graphs G attaining \(sdim_f(G)+sdim_f(\overline{G})=n\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arumugam, S., Mathew, V.: The fractional metric dimension of graphs. Discrete Math. 312, 1584–1590 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chartrand, G., Eroh, E., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 105, 99–113 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Currie, J., Oellermann, O.R.: The metric dimension and metric independence of a graph. J. Combin. Math. Combin. Comput. 39, 157–167 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Fehr, M., Gosselin, S., Oellermann, O.R.: The metric dimension of Cayley digraphs. Discrete Math. 306, 31–41 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  6. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combin. 2, 191–195 (1976)

    MathSciNet  MATH  Google Scholar 

  7. Holton, D.A., Sheehan, J.: The Petersen graph. Cambridge University Press (1993)

    Google Scholar 

  8. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl. Math. 70, 217–229 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nordhaus, E.A., Gaddum, J.W.: On complementary graphs. Amer. Math. Monthly 63, 175–177 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  10. Oellermann, O.R., Peters-Fransen, J.: The strong metric dimension of graphs and digraphs. Discrete Appl. Math. 155, 356–364 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Scheinerman, E.R., Ullman, D.H.: Fractal graph theory: A rational approach to the theory of graphs. John Wiley & Sons, New York (1997)

    MATH  Google Scholar 

  12. Sebö, A., Tannier, E.: On metric generators of graphs. Math. Oper. Res. 29, 383–393 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Slater, P.J.: Leaves of trees. Congress. Numer. 14, 549–559 (1975)

    MATH  Google Scholar 

  14. Yi, E.: The fractional metric dimension of permutation graphs (submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Kang, C.X., Yi, E. (2013). The Fractional Strong Metric Dimension of Graphs. In: Widmayer, P., Xu, Y., Zhu, B. (eds) Combinatorial Optimization and Applications. COCOA 2013. Lecture Notes in Computer Science, vol 8287. Springer, Cham. https://doi.org/10.1007/978-3-319-03780-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03780-6_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03779-0

  • Online ISBN: 978-3-319-03780-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics