Nothing Special   »   [go: up one dir, main page]

Skip to main content

Space Complexity of Self-Stabilizing Leader Election in Population Protocol Based on k-Interaction

  • Conference paper
Stabilization, Safety, and Security of Distributed Systems (SSS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8255))

Included in the following conference series:

Abstract

Population protocol (PP) is a distributed computing model for passively mobile systems, in which a computation is executed by interactions between two agents. This paper is concerned with an extended model, population protocol based on interactions of at most k agents (PP k ). Beauquier et al. (2012) recently introduced the model, and showed a hierarchy of computational powers of PP k with respect to k; a PP k + 1 is strictly more powerful than a PP k . Motivated by a further understanding of the model, this paper investigates the space complexity of PP k for self-stabilizing leader election (SS-LE), which is a fundamental problem for a distributed system. Cai et al. (2012) showed that the space complexity of SS-LE for n agents by a PP (i.e., PP2) is exactly n. This paper shows that the space complexity of SS-LE for n agents by a PP k is exactly ⌈(n − 1)/(k − 1)⌉ + 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Stably computable properties of network graphs. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 63–74. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distributed Computing 18, 235–253 (2006)

    Article  MATH  Google Scholar 

  3. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols with a leader. Distributed Computing 21, 183–199 (2008)

    Article  MATH  Google Scholar 

  4. Angluin, D., Aspnes, J., Fischer, M.J., Jiang, H.: Self-stabilizing population protocols. ACM Transactions on Autonomous and Adaptive Systems 3, Article 13 (2008)

    Google Scholar 

  5. Aspnes, J., Ruppert, E.: An introduction to population protocols. Bulletin of the EATCS 93, 98–117 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Beauquier, J., Burman, J., Rosaz, L., Rozoy, B.: Non-deterministic population protocols. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 61–75. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Beauquier, J., Clement, J., Messika, S., Rosaz, L., Rozoy, B.: Self-stabilizing counting in mobile sensor networks. In: Proc. of PODC 2007, pp. 396–397 (2007)

    Google Scholar 

  8. Cai, S., Izumi, T., Wada, K.: How to prove impossibility under global fairness: on space complexity of self-stabilizing leader election on a population protocol model. Theory of Computing Systems 50, 433–445 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Canepa, D., Potop-Butucaru, M.G.: Stabilizing leader election in population protocols. INRIA Rocquencourt, RR-6269 (2007), http://hal.inria.fr/inria-00166632/en/

  10. Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Mediated population protocols. Theoretical Computer Science 412, 2434–2450 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chatzigiannakis, I., Michail, O., Spirakis, P.G.: Recent advances in population protocols. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 56–76. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Devismes, S., Tixeuil, S., Yamashita, M.: Weak vs. self vs. probabilistic stabilization. In: Proc. of ICDCS 2008, pp. 681–688 (2008)

    Google Scholar 

  13. Dijkstra, E.W.: Self stabilizing systems in spite of distributed control. Communications of the Association of the Computing Machinery 17, 643–644 (1974)

    Article  MATH  Google Scholar 

  14. Fischer, M., Jiang, H.: Self-stabilizing leader election in networks of finite-state anonymous agents. In: Shvartsman, A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 395–409. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Guerraoui, R., Ruppert, E.: Names trump malice: Tiny mobile agents can tolerate byzantine failures. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 484–495. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population protocols. Theoretical Computer Science 412, 2434–2450 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mizoguchi, R., Ono, H., Kijima, S., Yamashita, M.: On space complexity of self-stabilizing leader election in mediated population protocol. Distributed Computing 25, 451–460 (2012)

    Article  MATH  Google Scholar 

  18. Schrijver, A.: Combinatorial Optimization. Springer (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Xu, X., Yamauchi, Y., Kijima, S., Yamashita, M. (2013). Space Complexity of Self-Stabilizing Leader Election in Population Protocol Based on k-Interaction. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2013. Lecture Notes in Computer Science, vol 8255. Springer, Cham. https://doi.org/10.1007/978-3-319-03089-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03089-0_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03088-3

  • Online ISBN: 978-3-319-03089-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics