Nothing Special   »   [go: up one dir, main page]

Skip to main content

VTApi: An Efficient Framework for Computer Vision Data Management and Analytics

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8192))

  • 3272 Accesses

Abstract

VTApi is an open source application programming interface designed to fulfill the needs of specific distributed computer vision data and metadata management and analytic systems and to unify and accelerate their development. It is oriented towards processing and efficient management of image and video data and related metadata for their retrieval, analysis and mining with the special emphasis on their spatio-temporal nature in real-world conditions. VTApi is a free extensible framework based on progressive and scalable open source software as OpenCV for high- performance computer vision and data mining, PostgreSQL for efficient data management, indexing and retrieval extended by similarity search and integrated with geography/spatio-temporal data manipulation.

The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-02895-8_64

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Guliato, D., et al.: POSTGRESQL-IE: An image-handling extension for postgreSQL. Journal of Digital Imaging 22, 149–165 (2009)

    Article  Google Scholar 

  2. Gelasca, E.D., et al.: CORTINA: Searching a 10 million + images database. Tech. rep. (September 2007), http://vision.ece.ucsb.edu/publications/elisa_VLDB_2007.pdf

  3. Bastan, M., et al.: BilVideo-7: An MPEG-7- compatible video indexing and retrieval system. IEEE Multimedia 17, 62–73 (2010)

    Article  Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Singapore (2006)

    MATH  Google Scholar 

  5. Chmelar, P., Lanik, A., Mlich, J.: SUNAR surveillance network augmented by retrieval. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010, Part II. LNCS, vol. 6475, pp. 155–166. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Döller, M., Kosch, H.: The MPEG-7 multimedia database system (MPEG-7 MMDB). J. Syst. Softw. 81(9), 1559–1580 (2008)

    Article  Google Scholar 

  7. Hellerstein, J.M., Naughton, J.F., Pfeffer, A.: Generalized search trees for database systems. In: VLDB 1995, Zurich, Switzerland, pp. 562–573. Morgan Kaufmann (1995)

    Google Scholar 

  8. Kosch, H.: Distributed Multimedia Database Technologies: Supported MPEG-7 and by MPEG-21. CRC Press, Boca Raton (2004)

    Google Scholar 

  9. Melton, J., Eisenberg, A.: SQL multimedia and application packages (SQL/MM). SIGMOD Rec. 30(4), 97–102 (2001)

    Article  Google Scholar 

  10. Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and trecvid. In: MIR 2006: Proc. of the 8th ACM Int. Workshop on Multimedia Information Retrieval, pp. 321–330. ACM Press, New York (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chmelar, P., Pesek, M., Volf, T., Zendulka, J., Froml, V. (2013). VTApi: An Efficient Framework for Computer Vision Data Management and Analytics. In: Blanc-Talon, J., Kasinski, A., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2013. Lecture Notes in Computer Science, vol 8192. Springer, Cham. https://doi.org/10.1007/978-3-319-02895-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02895-8_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02894-1

  • Online ISBN: 978-3-319-02895-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics