Nothing Special   »   [go: up one dir, main page]

Skip to main content

Using Structural Similarity for Effective Retrieval of Knowledge from Class Diagrams

  • Conference paper
  • First Online:
Research and Development in Intelligent Systems XXX (SGAI 2013)

Abstract

Due to the proliferation of object-oriented software development, UML software designs are ubiquitous. The creation of software designs already enjoys wide software support through CASE (Computer-Aided Software Engineering) tools. However, there has been limited application of computer reasoning to software designs in other areas. Yet there is expert knowledge embedded in software design artefacts which could be useful if it were successfully retrieved. While the semantic tags are an important aspect of a class diagram, the approach formulated here uses only structural information. It is shown that by applying case-based reasoning and graph matching to measure similarity between class diagrams it is possible to identify properties of an implementation not encoded within the actual diagram, such as the domain, programming language, quality and implementation cost. The practical applicability of this research is demonstrated in the area of cost estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Tests were carried out with one, three and five nearest neighbours.

References

  1. Beddoe, G. Petrovic, S. (2006) Determining feature weights using a genetic algorithm in a case-based reasoning approach to personnel rostering. European Journal of Operational Research, Vol. 175, Issue 2, pp. 649–671.

    Google Scholar 

  2. Boehm, B. Abts, C. Brown, A. W. Chulani, S. Clark, B. K. Horowitz, E. Madachy, R. Reifer, D. J. Steece, B. (2000) Software Cost Estimation with COCOMO II, Englewood Cliffs, NJ:Prentice-Hall.

    Google Scholar 

  3. Briand, L. Wieczorek, I (2002) Resource Estimation in Software Engineering, Encyclopedia of Software Engineering, J. J. Marcinak. New York, John Wiley & Sons: 1160–1196.

    Google Scholar 

  4. Desharnais, J. M. (1989) Analyse statistique de la productivitie des projets informatique a partie de la technique des point des fonction. University of Montreal.

    Google Scholar 

  5. Garey, M. R. Johnson, D. S. (1987) Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman.

    Google Scholar 

  6. Gomes, P. Gandola, P. Cordeiro, J. (2007) Helping Software Engineers Reusing UML Class Diagrams, in Proceedings of the 7th International Conference on Base-Based Reasoning (ICCBR’07) pp. 449–462, Springer, 2007.

    Google Scholar 

  7. Grabert, M. Bridge, D.G. (2003) Case-Based Reuse of Software Examplets, Journal of Universal Computer Science, Vol. 9, No. 7, pp. 627–641.

    Google Scholar 

  8. Huang, Z. (2009) Cost Estimation of Software Project Development by Using Case-Based Reasoning Technology with Clustering Index Mechanism. In Proceedings of the 2009 Fourth international Conference on innovative Computing, information and Control, ICICIC. IEEE Computer Society, pp. 1049–1052, Washington, DC.

    Google Scholar 

  9. Li, Y. F. Xie, M. Goh, T. N. (2009) A study of mutual information based feature selection for case based reasoning in software cost estimation. Expert Systems with Applications: An International Journal, Volume 36, Issue 3, pp. 5921–5931, Pergamon Press, Tarrytown, NY.

    Google Scholar 

  10. Meditskos, G. Bassiliades, N. (2007) Object-Oriented Similarity Measures for Semantic Web Service Matchmaking, in Proceedings 5th IEEE European Conference on Web Services.

    Google Scholar 

  11. Mitchell, T. M. (1990) The need for biases in learning generalizations, In Readings in machine learning, San Mateo, CA, Morgan Kaufmann.

    Google Scholar 

  12. Özşen, S. Güneş, S. (2009) Attribute weighting via genetic algorithms for attribute weighted artificial immune system (AWAIS) and its application to heart disease and liver disorders problems, Expert Systems with Applications, Vol. 36, Issue 1, pp. 386–392.

    Google Scholar 

  13. Petridis, M. Saeed, S. Knight, B. (2007) A Generalised Approach for Similarity Metrics Between 3D Shapes to Assist the Design of Metal Castings using an Automated Case Based Reasoning System, in Proceedings of the 12\(^{{\rm th}}\) UK CBR workshop, Peterhouse, December 2007, CMS press, pp. 19–29, UK.

    Google Scholar 

  14. Robles, K. Fraga, A. Morato, J. Llorens, J. (2012) Towards an ontology-based retrieval of UML Class Diagrams, Information and Software Technology, Vol. 54, Issue 1, January 2012, pp. 72–86, Elsevier.

    Google Scholar 

  15. Valerdi, R. (2007) Cognitive Limits of Software Cost Estimation. In Proceedings of the First international Symposium on Empirical Software Engineering and Measurement, Empirical Software Engineering and Measurement. IEEE Computer Society, pp. 117–125, Washington, DC.

    Google Scholar 

  16. Wolf, M. Petridis, M. (2008) Measuring Similarity of Software Designs using Graph Matching for CBR, in Proceedings of the Artificial Intelligence Techniques in Software Engineering Workshop, 18\(^{{\rm th}}\) European Conference on Artificial Intelligence.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Wolf, M., Petridis, M., Ma, J. (2013). Using Structural Similarity for Effective Retrieval of Knowledge from Class Diagrams. In: Bramer, M., Petridis, M. (eds) Research and Development in Intelligent Systems XXX. SGAI 2013. Springer, Cham. https://doi.org/10.1007/978-3-319-02621-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02621-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02620-6

  • Online ISBN: 978-3-319-02621-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics