Abstract
In these lecture notes we will explore the mathematics of the space of immersed curves, as is nowadays used in applications in computer vision. In this field, the space of curves is employed as a “shape space”; for this reason, we will also define and study the space of geometric curves, which are immersed curves up to reparameterizations. To develop the usages of this space, we will consider the space of curves as an infinite dimensional differentiable manifold; we will then deploy an effective form of calculus and analysis, comprising tools such as a Riemannian metric, so as to be able to perform standard operations such as minimizing a goal functional by gradient descent, or computing the distance between two curves. Along this path of mathematics, we will also present some current literature results (and a few examples of different “shape spaces”, including more than only curves).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We will provide more detailed definitions and properties of the “actions” in Sect. 3.8.
- 2.
Due to Fréchet, 1948; but also attributed to Karcher [26].
- 3.
The precise definition of what the gradient is is in Sect. 3.7.
- 4.
A different gradient descent flow for curve length will be discussed in Remark 10.32.
- 5.
The derivatives are computed in distributional sense, and must exists as Lebesgue integrable functions.
- 6.
The fattened sets are not drawn filled—otherwise they would cover A.
- 7.
That is, any A, B ∈Ξ c can be connected by a Lipschitz arc γ: [0, 1] →Ξ c .
- 8.
“Generically” is meant in the Baire sense: the set of exceptions is of first category.
- 9.
There is a slight abuse of notation here, since in the definition N = T ⊥ given for planar curves in 1.12, we defined N to be a “vector” and not the “vector space orthogonal to T”.
- 10.
We are considering only reparameterizations in Diff+(S 1).
- 11.
It seems that S is Lipschitz-arc-connected, so d g(x, y) < ∞; but we did not carry on a detailed proof.
- 12.
Indeed, the continuous lifting is unique up to addition of a constant to α(s), which is equivalent to a rotation of ξ; and the constant is decided by Φ 1(α) = 2π 2.
- 13.
It is though possible to define Sobolev metrics for any \(j \in \mathbb{R},j > 0\); see Prop. 3.1 in [57].
- 14.
Though, a scale-invariant Sobolev metric is proposed in [39] in Sect. 4.8 as a sensible generalization.
- 15.
The detailed proof has not yet been written…
- 16.
Note this definition is different from (13) in [56].
- 17.
We use the definition (42) of H 0.
- 18.
Though, an alternate method that does not need the tracing of the curve is described in Sect. 5.3 in [56]—but it was not successively used, since it depends on some difficult-to-tune parameters.
- 19.
In a sense, the focus of research in active contours has been mostly on the numerator in (52)—whereas we now focus on the denominator.
- 20.
We use the definition (42) of H 0; the directional derivative was computed in 4.6.
- 21.
- 22.
We use the definition (42) of H 0.
- 23.
A.k.a. as the Picard–Lindelöf theorem.
- 24.
Actually, by tracking the first part of the proof in detail, it possible to prove that all other constants \(a_{1},a_{2},a_{3},a_{4},P,Q\) may be bounded in terms of these two quantities I(t), N(t).
References
L. Ambrosio, G. Da Prato, A.C.G. Mennucci, An introduction to measure theory and probability, 2007. http//dida.sns.it/dida2/cl/07-08/folde2/pdf0
T.M. Apostol, Mathematical Analysis (Addison Wesley, Reading, 1974)
C.J. Atkin, The Hopf-Rinow theorem is false in infinite dimensions. Bull. Lond. Math. Soc. 7(3), 261–266 (1975) doi: 10.1112/blms/7.3.261
H. Brezis, Analisi Funzionale (Liguori Editore, Napoli, 1986). Italian translation of Analyse fonctionelle (Masson, Paris, 1983)
J. Canny, A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986) ISSN 0162-8828.
V. Caselles, F. Catte, T. Coll, F. Dibos, A geometric model for edge detection. Num. Mathematik 66, 1–31 (1993)
V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours, in Proceedings of the IEEE International Conference on Computer Vision, Cambridge, MA, June 1995, pp. 694–699
T. Chan, L. Vese, Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)
G. Charpiat, O. Faugeras, R. Keriven, Approximations of shape metrics and application to shape warping and empirical shape statistics. Found. Comput. Math. (2004) doi: 10.1007/s10208-003-0094-xgg819. INRIA report 4820 (2003)
G. Charpiat, R. Keriven, J.P. Pons, O. Faugeras, Designing spatially coherent minimizing flows for variational problems based on active contours, in ICCV (2005). doi: 10.1109/ICCV.2005.69
G. Charpiat, P. Maurel, J.-P. Pons, R. Keriven, O. Faugeras, Generalized gradients: Priors on minimization flows. Int. J. Comp. Vis. (2007). doi: 10.1007/s11263-006-9966-2
Y. Chen, H. Tagare, S. Thiruvenkadam, F. Huang, D. Wilson, K. Gopinath, R. Briggs, E. Geiser, Using prior shapes in geometric active contours in a variational framework. Int. J. Comp. Vis. 50(3), 315–328 (2002)
D. Cremers, S. Soatto, A pseuso distance for shape priors in level set segmentation, in 2nd IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision, Nice, ed. by N. Paragios, Oct 2003, pp. 169–176
M.P. do Carmo, Riemannian Geometry (Birkhäuser, Boston, 1992)
A. Duci, A.C.G. Mennucci, Banach-like metrics and metrics of compact sets. arXiv preprint arXiv:0707.1174 (2007)
A. Duci, A.J. Yezzi, S.K. Mitter, S.Soatto, Shape representation via harmonic embedding, in International Conference on Computer Vision (ICCV03), vol. 1, Washington, DC, pp. 656–662 (IEEE Computer Society, Silver Spring, 2003). ISBN 0-7695-1950-4. doi: 10.1109/ICCV.2003.1238410
A. Duci, A.J. Yezzi, S. Soatto, K. Rocha, Harmonic embeddings for linear shape. J. Math Imag. Vis 25, 341–352 (2006). doi: 10.1007/s10851-006-7249-8
J. Eells, K.D. Elworthy, Open embeddings of certain Banach manifolds. Ann. Math. (2) 91, 465–485 (1970)
I. Ekeland, The Hopf-Rinow theorem in infinite dimension. J. Differ. Geom. 13(2), 287–301 (1978)
A.T. Fomenko, The Plateau Problem. Studies in the Development of Modern Mathematics (Gordon and Breach, New York, 1990)
M. Gage, R.S. Hamilton, The heat equation shrinking convex plane curves. J. Differ. Geom. 23, 69–96 (1986)
J. Glaunès, A. Trouvé, L. Younes, Modeling planar shape variation via Hamiltonian flows of curves, in Analysis and Statistics of Shapes, ed. by A. Yezzi, H. Krim. Modeling and Simulation in Science, Engineering and Technology, chapter 14 (Birkhäuser, Basel, 2005)
M. Grayson, The heat equation shrinks embedded planes curves to round points. J. Differ. Geom. 26, 285–314 (1987)
R.S. Hamilton, The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. (N.S.) 7(1), 65–222 (1982) ISSN 0273-0979.
J. Itoh, M. Tanaka, The Lipschitz continuity of the distance function to the cut locus. Trans. A.M.S. 353(1), 21–40 (2000)
H. Karcher, Riemannian center of mass and mollifier smoothing. Comm. Pure Appl. Math. 30, 509–541 (1977)
M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models. Int. J. Comp. Vis. 1, 321–331 (1987)
S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, A. Yezzi, Gradient flows and geometric active contour models, in Proceedings of the IEEE International Conference on Computer Vision, Cambridge, MA (1995), pp. 810–815. doi:10.1109/ICCV.1995.466855
E. Klassen, A. Srivastava, W. Mio, S.H. Joshi, Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26, 372–383 (2004). ISSN 0162-8828. doi: 10.1109/TPAMI.2004.1262333
W. Klingenberg, Riemannian Geometry (W. de Gruyter, Berlin, 1982)
S. Lang, Fundamentals of Differential Geometry (Springer, Berlin, 1999)
M. Leventon, E. Grimson, O. Faugeras, Statistical shape influence in geodesic active contours, IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, SC, vol. 1 (2000), pp. 316–323. doi:10.1109/CVPR.2000.855835
Y. Li, L. Nirenberg, The distance function to the boundary, Finsler geometry and the singular set of viscosity solutions of some Hamilton-Jacobi equations. Comm. Pure Appl. Math. 58, 85–146 (2005)
R. Malladi, J. Sethian, B. Vemuri, Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17, 158–175 (1995)
A.C.G. Mennucci, A. Yezzi, G. Sundaramoorthi, Properties of Sobolev Active Contours. Interf. Free Bound. 10, 423–445 (2008)
A.C.G. Mennucci, On asymmetric distances, 2nd version, preprint, 2004. http://cvgmt.sns.it/papers/and04/
P.W. Michor, D. Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Documenta Math. 10, 217–245 (2005). http://www.univie.ac.at/EMIS/journals/DMJDMV/vol-10/05.pdf
P.W. Michor, D. Mumford, Riemannian geometris of space of plane curves. J. Eur. Math. Soc. (JEMS) 8, 1–48 (2006)
P.W. Michor, D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmonic Anal. 23, 76–113 (2007). doi: 10.1016/j.acha.2006.07.004. http://www.mat.univie.ac.at/~michor/curves-hamiltonian.pdf
W. Mio, A. Srivastava, Elastic-string models for representation and analysis of planar shapes, in Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004 (CVPR 2004), vol. 2 (2004), pp. 10–15. doi:10.1109/CVPR.2004.1315138
W. Mio, A. Srivastava, Elastic-string models for representation and analysis of planar shapes, in Conference on Computer Vision and Pattern Recognition (CVPR), June 2004. http://stat.fsu.edu/~anuj/pdf/papers/CVPR_Paper_04.pdf
D. Mumford, J. Shah, Boundary detection by minimizing functionals, in Proceedings CVPR 85: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 19–23, 1985, San Francisco, CA, 1985
D. Mumford, J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42, 577–685 (1989)
S. Osher, J. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on the Hamilton-Jacobi equations. J. Comp. Phys. 79, 12–49 (1988)
T.R. Raviv, N. Kiryati, N. Sochen, Unlevel-set: geometry and prior-based segmentation, in Proceedings of European Conference on Computer Vision, 2004 (Computer Vision-ECCV 2004), ed. by T. Pajdla (Springer, Berlin, 2004). http://dx.doi.org/10.1007/978-3-540-24673-2_5
R. Ronfard, Region based strategies for active contour models. Int. J. Comp. Vis. 13(2), 229–251 (1994). http://perception.inrialpes.fr/Publications/1994/Ron94
M. Rousson, N. Paragios, Shape priors for level set representations, in Proceedings of the European Conference on Computer Vision, vol. 2 (2002), pp. 78–93
W. Rudin, Functional Analysis (McGraw-Hill, New York, 1973)
W. Rudin, Real and Complex Analysis (McGraw-Hill, New York, 1987)
J. Shah, H 0 type Riemannian metrics on the space of planar curves. Q. Appl. Math. 66, 123–137 (2008)
S. Soatto, A.J. Yezzi, DEFORMOTION: deforming motion, shape average and the joint registration and segmentation of images. ECCV (3), 32–57 (2002)
A. Srivastava, S.H. Joshi, W. Mio, X. Liu, Statistical shape analysis: clustering, learning, and testing. IEEE Trans. Pattern Anal. Mach. Intell. 27, 590–602 (2005). ISSN 0162-8828. doi: 10.1109/TPAMI.2005.86
G. Sundaramoorthi, A. Yezzi, A.C.G. Mennucci, Sobolev active contours, in VLSM, ed. by N. Paragios, O.D. Faugeras, T. Chan, C. Schnörr. Lecture Notes in Computer Science, vol. 3752 (Springer, Berlin, 2005), pp. 109–120. ISBN 3-540-29348-5. doi: 10.1007/11567646_10
G. Sundaramoorthi, J.D. Jackson, A. Yezzi, A.C.G. Mennucci, Tracking with Sobolev active contours, in Conference on Computer Vision and Pattern Recognition (CVPR06) (IEEE Computer Society, Silver Spring, 2006). ISBN 0-7695-2372-2. doi: 10.1109/CVPR.2006.314
G. Sundaramoorthi, A. Yezzi, A.C.G. Mennucci, G. Sapiro, New possibilities with Sobolev active contours, in Scale Space Variational Methods 07 (2007). http://ssvm07.ciram.unibo.it/ssvm07_public/index.html. “Best Numerical Paper-Project Award”; also [58]
G. Sundaramoorthi, A. Yezzi, A.C.G. Mennucci, Sobolev active contours. Int. J. Comp. Vis. (2007). doi: 10.1007/s11263-006-0635-2
G. Sundaramoorthi, A. Yezzi, A.C.G. Mennucci, Coarse-to-fine segmentation and tracking using Sobolev Active Contours. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) (2008). doi: 10.1109/TPAMI.2007.70751
G. Sundaramoorthi, A. Yezzi, A.C.G. Mennucci, G. Sapiro, New possibilities with Sobolev active contours. Int. J. Comp. Vis. (2008). doi: 10.1007/s11263-008-0133-9
A. Trouvé, L. Younes, Local geometry of deformable templates. SIAM J. Math. Anal. 37(1), 17–59 (electronic) (2005). ISSN 0036-1410
A. Tsai, A. Yezzi, W. Wells, C. Tempany, D. Tucker, A. Fan, E. Grimson, A. Willsky, Model-based curve evolution technique for image segmentation, in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001 (CVPR 2001), vol. 1, Dec 2001, pp. I-463, I-468. doi: 10.1109/CVPR.2001.990511
A. Tsai, A. Yezzi, A.S. Willsky, Curve evolution implementation of the mumford-shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10(8), 1169–1186 (2001)
L.A. Vese, T.F. Chan, A multiphase level set framework for image segmentation using the mumford and shah model. Int. J. Comp. Vis. 50(3), 271–293 (2002)
A. Yezzi, A.C.G. Mennucci, Geodesic homotopies, in EUSIPCO04 (2004). http://www.eurasip.org/content/Eusipco/2004/defevent/papers/cr1925.pdf
A. Yezzi, A.C.G. Mennucci, Metrics in the space of curves. arXiv (2004)
A. Yezzi, A.C.G. Mennucci, Conformal metrics and true “gradient flows” for curves, in International Conference on Computer Vision (ICCV05) (2005), pp. 913–919. doi: 10.1109/ICCV.2005.60. URL http://research.microsoft.com/iccv2005/
A. Yezzi, A. Tsai, A. Willsky, A statistical approach to snakes for bimodal and trimodal imagery, in The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, vol. 2, October 1999, pp. 898, 903. doi:10.1109/ICCV.1999.790317
L. Younes, Computable elastic distances between shapes. SIAM J. Appl. Math. 58(2), 565–586 (1998). doi: 10.1137/S0036139995287685
L. Younes, P.W. Michor, J. Shah, D. Mumford, A metric on shape space with explicit geodesics. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19(1), 25–57 (2008). ISSN 1120-6330. doi: 10.4171/RLM/506
C.T. Zahn, R.Z. Roskies, Fourier descriptors for plane closed curves. IEEE Trans. Comput. 21(3), 269–281 (1972). ISSN 0018-9340. doi: 10.1109/TC.1972.5008949
S.C. Zhu, T.S. Lee, A.L. Yuille, Region competition: Unifying snakes, region growing, energy/bayes/MDL for multi-band image segmentation, in ICCV (1995), p. 416. citeseer.ist.psu.edu/zhu95region.html
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Mennucci, A.C.G. (2013). Metrics of Curves in Shape Optimization and Analysis. In: Level Set and PDE Based Reconstruction Methods in Imaging. Lecture Notes in Mathematics(), vol 2090. Springer, Cham. https://doi.org/10.1007/978-3-319-01712-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-01712-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-01711-2
Online ISBN: 978-3-319-01712-9
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)