Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hybrid User Model for Capturing a User’s Information Seeking Intent

  • Chapter
  • First Online:
Multimedia Services in Intelligent Environments

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 24))

  • 946 Accesses

  • 2 Citations

Abstract

A user is an important factor that contributes to the success or failure of any information retrieval system. Unfortunately, users often do not have the same technical and/or domain knowledge as the designers of such a system, while the designers are often limited in their understanding of a target user’s needs. In this chapter, we study the problem of employing a cognitive user model for information retrieval in which knowledge about a user is captured and used for improving his/her performance in an information seeking task. Our solution is to improve the effectiveness of a user in a search by developing a hybrid user model to capture user intent dynamically and combines the captured intent with an awareness of the components of an information retrieval system. The term “hybrid” refers to the methodology of combining the understanding of a user with the insights into a system all unified within a decision theoretic framework. In this model, multi-attribute utility theory is used to evaluate values of the attributes describing a user’s intent in combination with the attributes describing an information retrieval system. We use the existing research on predicting query performance and on determining dissemination thresholds to create functions to evaluate these selected attributes. This approach also offers fine-grained representation of the model and the ability to learn a user’s knowledge dynamically. We compare this approach with the best traditional approach for relevance feedback in the information retrieval community—Ide dec-hi, using term frequency inverted document frequency (TFIDF) weighting on selected collections from the information retrieval community such as CRANFIELD, MEDLINE, and CACM. The evaluations with our hybrid model with these testbeds show that this approach retrieves more relevant documents in the first 15 returned documents than the TFIDF approach for all three collections, as well as more relevant documents on MEDLINE and CRANFIELD in both initial and feedback runs, while being competitive with the Ide dec-hi approach in the feedback runs for the CACM collection. We also demonstrate the use of our user model to dynamically create a common knowledge base from the users’ queries and relevant snippets using the APEX 07 data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen, R.: User models: theory, method and practice. Int. J. Man Mach. Stud. 32, 511–543 (1990)

    Article  Google Scholar 

  2. Baeza-Yates, R., Calderón-Benavides, L., Gonzalez-Caro, C.: The intention behind Web queries. In: Proceedings of String Processing and Information Retrieval 2006, pp. 98–109. Glasgow, Scotland (2006)

    Google Scholar 

  3. Baeza-Yates, R., Raghavan, P.: Next generation Web search. In: Ceri, S., Brambilla, M. (eds.) Search Computing. Lecture Notes in Computer Science, vol. 5950, pp. 11–23. Springer, Berlin (2010)

    Google Scholar 

  4. Baeza-Yates, R., Ribiero-Neto, B.: Modern Information Retrieval. Addison-Wesley, New York (1999)

    Google Scholar 

  5. Balabanovic, M.: Exploring versus exploiting when learning user models for text recommendation. User Model. User-Adap. Inter. 8(1–2), 71–102 (1998)

    Article  Google Scholar 

  6. Balabanovic, M., Shoham, Y.: Content-based collaborative recommendation. Commun. ACM 40(3), 66–72 (1997)

    Article  Google Scholar 

  7. Belkin. N.J.: Interaction with text: information retrieval as information seeking behavior. Information retrieval. 10. von der Modelierung zur Anwerdung, pp. 55–66. Universitaetsverlag, Konstanz (1993)

    Google Scholar 

  8. Belkin, N.J., Oddy, R.N., Brooks, H.M.: Ask for information retrieval: part I: background and theory. J. Doc. 38(2), 61–71 (1982)

    Article  Google Scholar 

  9. Belkin, N.J. Windel, G.: Using monstrat for the analysis of information interaction. In: IRFIS 5, Fifth International Research Forum in Information Science, pp. 359–382. Heidelberg (1984)

    Google Scholar 

  10. Billsus, D., Pazzani, M.J.: User modeling for adaptive news access. User Model. User-Adap. Inter. 10(2–3), 147–180 (2000)

    Article  Google Scholar 

  11. Bodoff, D., Raban, D.: User models as revealed in web-based research services. J. Am. Soc. Inform. Sci. Technol. 63(3), 584–599 (2012)

    Article  Google Scholar 

  12. Borlund, P.: The concept of relevance in information retrieval. J. Am. Soc. Inform. Sci. Technol. 54(10), 913–925 (2003)

    Article  Google Scholar 

  13. Boughanem, M., Tmar, M.: Incremental adaptive filtering: profile learning and threshold calibration. In: Proceedings of SAC 2002, pp. 640–644. Madrid, Spain (2002)

    Google Scholar 

  14. Brajnik, G., Guida, G., Tasso, C.: User modeling in intelligent information retrieval. Inf. Process. Manage. 23(4), 305–320 (1987)

    Article  Google Scholar 

  15. Broder, A.: A taxonomy of Web search. SIGIR Forum 36(2), 3–10 (2002)

    Article  Google Scholar 

  16. Brown, S.M.: Decision theoretic approach for interface agent development. Ph.D. thesis, Air Force Institute of Technology (1998)

    Google Scholar 

  17. Campbell, I., van Rijsbergen, C.J.: Ostensive model of developing information needs. In: Proceedings of the Second International Conference on Conceptions of Library and Information Science: Integration in Perspective (CoLIS 2), pp. 251–268 (1996)

    Google Scholar 

  18. Cecchini, R.L., Lorenzetti, C.M., Maguitman, A.G., Brignole, N.B.: Using genetic algorithms to evolve a population of topical queries. Inf. Process. Manage. 44(6), 1863–1878 (2008)

    Article  Google Scholar 

  19. Chen, S.Y., Magoulas, G.D., Dimakopoulos, D.: A flexible interface design for Web directories to accommodate different cognitive styles. J. Am. Soc. Inform. Sci. Technol. 56(1), 70–83 (2005)

    Article  Google Scholar 

  20. Cooper, W., Maron, M.E.: Foundations of probabilistic and utility theoretic indexing. J. Assoc. Comput. Mach. 25(1), 67–80 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Donghee, Y.: Hybrid query processing for personalized information retrieval on the Semantic Web. Knowl.-Based Syst. 27, 211–218 (2012)

    Google Scholar 

  22. Drucker, H., Shahrary, B., Gibbon, C.: Support vector machines: relevance feedback and information retrieval. Inf. Process. Manage. 38(3), 305–323 (2002)

    Article  MATH  Google Scholar 

  23. Ducheneaut, N., Partidge, K., Huang, Q., Price, B., Roberts, M., Chi, E.H., Belotti, V., Begole, B.: Collaborative filtering is not enough? Experiments with a mixed-model recommender for leisure activities. In: Proceeding of the Seventeenth International Conference, User Modeling, Adaptation, and Personalization, pp. 295–306. Trento, Italy (2009)

    Google Scholar 

  24. Duong H.T., Uddin, M.N., Lim D., Jo, G.: A collaborative ontology-based user profiles system. In: Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems, pp. 540–552 (2009)

    Google Scholar 

  25. Efthimis, E.N.: Query expansion. In: Williams, M. (ed.) Ann Rev Inf Sci Technol 31, 121–187 (1996)

    Google Scholar 

  26. Frake, W.B., Baeza-Yates, R.: Information retrieval: data structures and algorithms, p. 07458. Prentice Hall PTR, Upper Saddle River (1992)

    Google Scholar 

  27. Ghorab M.R., Zhou D., O’Connor A., Wade, V.: Personalised information retrieval: survey and classification. User Modeling and User-Adapted Interaction. Online first (2012)

    Google Scholar 

  28. He, B., Ounis, I.: Inferring query performance using pre-retrieval predictors’. In: Information Systems, Special Issue for the String Processing and Information Retrieval: 11th International Conference, pp. 43–54 (2004)

    Google Scholar 

  29. Ide, E.: New experiment in relevance feedback. In: The Smart System Experiments in Automatic Documents Processing, pp. 337–354 (1971)

    Google Scholar 

  30. Ingwersen, P.: Information Retrieval Interaction. Taylor Graham, London (1992)

    Google Scholar 

  31. Jansen, B., Booth, D., Spink, A. Determining the user intent of Web search engine queries. In: Proceedings of the International World Wide Web Conference, pp. 1149–1150. Alberta, Canada (2007)

    Google Scholar 

  32. Jensen, F.V.: An Introduction to Bayesian Networks. University College London Press, London (1996)

    Google Scholar 

  33. Keeney, L.R., Raiffa, H.: Decision with Multiple Objectives: Preferences and Value Tradeoffs. Wiley, New York (1976)

    Google Scholar 

  34. Kim, J.: Describing and predicting information-seeking behavior on the Web. J. Am. Soc. Inform. Sci. Technol. 60(4), 679–693 (2009)

    Article  Google Scholar 

  35. Kofler, C., Lux, M.: Dynamic presentation adaptation based on user intent classification. In: Proceedings of the 17th ACM International Conference on Multimedia (MM ‘09), pp. 1117–1118. ACM, New York, USA (2009)

    Google Scholar 

  36. Kumaran, G., Allan, J.: Adapting information retrieval systems to user queries. Inf. Process. Manage. 44(6), 1838–1862 (2008)

    Article  Google Scholar 

  37. Lau, T., Horvitz, E.: Patterns of search: analyzing and modeling Web query refinement. In: Proceedings of the Seventh International Conference on User Modeling, pp. 119–128. Banff, Canada (1999)

    Google Scholar 

  38. Lee, U., Liu, Z., Cho, J.: Automatic identification of user goals in web search. In: Proceedings of the International World Wide Web Conference 2005, pp. 391–400. Chiba, Japan (2005)

    Google Scholar 

  39. Logan, B., Reece, S., Sparck, J.: Modeling information retrieval agents with belief revision. In: Proceedings of the Seventeenth Annual ACM/SIGIR Conference on Research and Development in Information Retrieval, pp. 91–100 (1994)

    Google Scholar 

  40. Lopér-Pujalte, C., Guerrero-Bote, V., Moya-Anegon, F.D.: Genetic algorithms in relevance feedback: a second test and new contributions. Inf. Process. Manage. 39(5), 669–697 (2003)

    Article  Google Scholar 

  41. Lynch, C.: The next generation of public access information retrieval systems for research libraries: lessons from ten years of the MELVYL system. Inf. Technol. Libr. 11(4), 405–415 (1992)

    Google Scholar 

  42. Mat-Hassan, M., Levene, M.: Associating search and navigation behavior through log analysis. J. Am. Soc. Inform. Sci. Technol. 56(9), 913–934 (2005)

    Article  Google Scholar 

  43. Michard, M.: Graphical presentation of boolean expressions in a database query language: design notes and an ergonomic evaluation. Behav. Inf. Technol. 1(3), 279–288 (1982)

    Article  Google Scholar 

  44. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  45. Nguyen, H.: Capturing user intent for information retrieval. Ph.D. Dissertation, University of Connecticut (2005)

    Google Scholar 

  46. Nguyen, H., Haddawy, P.: The decision-theoretic interactive video advisor. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence- UAI 99, pp. 494–501. Stockholm, Sweden (1999)

    Google Scholar 

  47. Nguyen, H., Santos, E. Jr, Schuet, A., Smith, N.: Hybrid user model for information retrieval. In: Technical Report of Modeling Others from Observations workshop at Twenty-First National Conference on Artificial Intelligence (AAAI) conference, pp. 61–68. Boston (2006)

    Google Scholar 

  48. Nguyen, H., Santos, E.J., Zhao, Q., Lee, C.: Evaluation of effects on retrieval performance for an adaptive user model. In: Adaptive Hypermedia 2004 Workshop Proceedings—Part I, pp. 193–202., Eindhoven, The Netherlands (2004a)

    Google Scholar 

  49. Nguyen, H., Santos, E.J., Zhao, Q., Wang, H.: Capturing user intent for information retrieval. In: Proceedings of the Human Factors and Ergonomics Society 48th Annual Meeting, pp. 371–375. New Orleans, LA (2004b)

    Google Scholar 

  50. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Mateo (1988)

    Google Scholar 

  51. Rich, E.: User modeling via stereotypes. Cogn. Sci. 3, 329–354 (1979)

    Article  Google Scholar 

  52. Rich, E.: Users are individuals: individualizing user models. Int. J. Man Mach. Stud. 18, 199–214 (1983)

    Article  Google Scholar 

  53. Rochio, J.J.: Relevance feedback in information retrieval. In: The Smart system—experiments in automatic document processing, pp. 313–323 (1971)

    Google Scholar 

  54. Rose, D., Levinson, D.: Understanding user goals in Web search. In: Proceedings of the International World Wide Web Conference 2004, pp. 13–19. New York, USA (2004)

    Google Scholar 

  55. Ruthven, I., Lalmas, M.: A survey on the use of relevance feedback for information access systems. Knowl. Eng. Rev. 18(2), 95–145 (2003)

    Article  Google Scholar 

  56. Ruthven, I., Lalmas, M., van Rijsbergen, K.: Incorporating user search behavior into relevance feedback. J. Am. Soc. Inform. Sci. Technol. 54(6), 529–549 (2003)

    Article  Google Scholar 

  57. Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback. J. Am. Soc. Inf. Sci. 41(4), 288–297 (1990)

    Article  Google Scholar 

  58. Santos, E.J., Nguyen, H.: Modeling users for adaptive information retrieval by capturing user intent. In: Chevalier, M., Julien, C., Soulé, C. (eds.) Collaborative and Social Information Retrieval and Access: Techniques for Improved User Modeling, pp. 88–118. IGI Global (2009)

    Google Scholar 

  59. Santos, E.J., Nguyen, H., Brown, S.M.: Kavanah: an active user interface for information retrieval application. In: Proceedings of 2nd Asia-Pacific Conference on Intelligent Agent Technology, pp. 412–423, Japan (2001)

    Google Scholar 

  60. Santos, E.J., Nguyen, H., Zhao, Q., Pukinskis, E.: Empirical evaluation of adaptive user modeling in a medical information retrieval application. In: Proceedings of the Ninth User Modeling Conference, pp. 292–296, Johnstown (2003a)

    Google Scholar 

  61. Santos, E.J., Nguyen, H., Zhao, Q., Wang, H.: User modeling for intent prediction in information analysis. In: Proceedings of the 47th Annual Meeting for the Human Factors and Ergonomics Society (HFES-03), pp. 1034–1038, Denver (2003b)

    Google Scholar 

  62. Saracevic, T.: Relevance reconsidered. In: Ingwersen, P., Pors, P.O. (eds.) Proceedings of the Second International Conference on Conceptions of Library and Information Science: Integration in Perspective. Copenhagen: The Royal School of Librarianship, pp. 201–218 (1996)

    Google Scholar 

  63. Saracevic, T., Spink A., Wu, M.: Users and intermediaries in information retrieval: what are they talking about? In: Proceedings of the Sixth International Conference in User Modeling - UM 97, pp. 43–54 (1997)

    Google Scholar 

  64. Sleator, D.D., Temperley D.: Parsing English with a link grammar. In: Proceedings of the Third International Workshop on Parsing Technologies, pp. 277–292 (1993)

    Google Scholar 

  65. Spink, A., Cole, C.: New Directions in Cognitive Information Retrieval. The Information Retrieval Series. Springer (2005)

    Google Scholar 

  66. Spink, A., Losee, R.M.: Feedback in information retrieval. In: Williams, M. (ed.) Ann.Rev. Inf. Sci. Technol. 31, 33–78 (1996)

    Google Scholar 

  67. Spink, A., Greisdorf, H., Bateman, J.: From highly relevant to not relevant: examining different regions of relevance. Inf. Process. Manage. 34(5), 599–621 (1998)

    Article  Google Scholar 

  68. Steichen, B., Ashman, H., Wade, V.: A comparative survey of personalised information retrieval and adaptive hypermedia techniques. Inf. Process. Manage. 48, 698–724 (2012)

    Article  Google Scholar 

  69. Truran, M., Schmakeit, J., Ashman, H.: The effect of user intent on the stability of search engine results. J. Am. Soc. Inform. Sci. Technol. 62(7), 1276–1287 (2011)

    Article  Google Scholar 

  70. Vickery, A., Brooks, H.: Plexus: the expert system for referral. Inf. Process. Manage. 23(2), 99–117 (1987)

    Article  Google Scholar 

  71. Voorhees, M.E.: On test collections for adaptive information retrieval. Inf. Process. Manage. 44(6), 1879–1885 (2008)

    Article  Google Scholar 

  72. Xie, Y., Raghavan, V.V.: Language-modeling kernel based approach for information retrieval. J. Am. Soc. Inform. Sci. Technol. 58(14), 2353–2365 (2007)

    Article  Google Scholar 

  73. Zanker, M., Jessenitschnig, M.: Case-studies on exploiting explicit customer requirements in recommender systems. User Model. User-Adap. Inter. 19(1–2), 133–166 (2009)

    Article  Google Scholar 

  74. Zhang, Y.: Complex adaptive filtering user profile using graphical models. Inf. Process. Manage. 44(6), 1886–1900 (2008)

    Article  MATH  Google Scholar 

  75. Zhao, Q., Santos, E.J., Nguyen, H., Mohammed, M.: What makes a good summary? In: Argamon, S., Howard, N. (eds.) Computational Methods for Counterterrorism, pp. 33–50. Springer, New York, (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hien Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nguyen, H., Santos, E. (2013). Hybrid User Model for Capturing a User’s Information Seeking Intent. In: Tsihrintzis, G., Virvou, M., Jain, L. (eds) Multimedia Services in Intelligent Environments. Smart Innovation, Systems and Technologies, vol 24. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00372-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00372-6_3

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00371-9

  • Online ISBN: 978-3-319-00372-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics