Abstract
A user is an important factor that contributes to the success or failure of any information retrieval system. Unfortunately, users often do not have the same technical and/or domain knowledge as the designers of such a system, while the designers are often limited in their understanding of a target user’s needs. In this chapter, we study the problem of employing a cognitive user model for information retrieval in which knowledge about a user is captured and used for improving his/her performance in an information seeking task. Our solution is to improve the effectiveness of a user in a search by developing a hybrid user model to capture user intent dynamically and combines the captured intent with an awareness of the components of an information retrieval system. The term “hybrid” refers to the methodology of combining the understanding of a user with the insights into a system all unified within a decision theoretic framework. In this model, multi-attribute utility theory is used to evaluate values of the attributes describing a user’s intent in combination with the attributes describing an information retrieval system. We use the existing research on predicting query performance and on determining dissemination thresholds to create functions to evaluate these selected attributes. This approach also offers fine-grained representation of the model and the ability to learn a user’s knowledge dynamically. We compare this approach with the best traditional approach for relevance feedback in the information retrieval community—Ide dec-hi, using term frequency inverted document frequency (TFIDF) weighting on selected collections from the information retrieval community such as CRANFIELD, MEDLINE, and CACM. The evaluations with our hybrid model with these testbeds show that this approach retrieves more relevant documents in the first 15 returned documents than the TFIDF approach for all three collections, as well as more relevant documents on MEDLINE and CRANFIELD in both initial and feedback runs, while being competitive with the Ide dec-hi approach in the feedback runs for the CACM collection. We also demonstrate the use of our user model to dynamically create a common knowledge base from the users’ queries and relevant snippets using the APEX 07 data set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allen, R.: User models: theory, method and practice. Int. J. Man Mach. Stud. 32, 511–543 (1990)
Baeza-Yates, R., Calderón-Benavides, L., Gonzalez-Caro, C.: The intention behind Web queries. In: Proceedings of String Processing and Information Retrieval 2006, pp. 98–109. Glasgow, Scotland (2006)
Baeza-Yates, R., Raghavan, P.: Next generation Web search. In: Ceri, S., Brambilla, M. (eds.) Search Computing. Lecture Notes in Computer Science, vol. 5950, pp. 11–23. Springer, Berlin (2010)
Baeza-Yates, R., Ribiero-Neto, B.: Modern Information Retrieval. Addison-Wesley, New York (1999)
Balabanovic, M.: Exploring versus exploiting when learning user models for text recommendation. User Model. User-Adap. Inter. 8(1–2), 71–102 (1998)
Balabanovic, M., Shoham, Y.: Content-based collaborative recommendation. Commun. ACM 40(3), 66–72 (1997)
Belkin. N.J.: Interaction with text: information retrieval as information seeking behavior. Information retrieval. 10. von der Modelierung zur Anwerdung, pp. 55–66. Universitaetsverlag, Konstanz (1993)
Belkin, N.J., Oddy, R.N., Brooks, H.M.: Ask for information retrieval: part I: background and theory. J. Doc. 38(2), 61–71 (1982)
Belkin, N.J. Windel, G.: Using monstrat for the analysis of information interaction. In: IRFIS 5, Fifth International Research Forum in Information Science, pp. 359–382. Heidelberg (1984)
Billsus, D., Pazzani, M.J.: User modeling for adaptive news access. User Model. User-Adap. Inter. 10(2–3), 147–180 (2000)
Bodoff, D., Raban, D.: User models as revealed in web-based research services. J. Am. Soc. Inform. Sci. Technol. 63(3), 584–599 (2012)
Borlund, P.: The concept of relevance in information retrieval. J. Am. Soc. Inform. Sci. Technol. 54(10), 913–925 (2003)
Boughanem, M., Tmar, M.: Incremental adaptive filtering: profile learning and threshold calibration. In: Proceedings of SAC 2002, pp. 640–644. Madrid, Spain (2002)
Brajnik, G., Guida, G., Tasso, C.: User modeling in intelligent information retrieval. Inf. Process. Manage. 23(4), 305–320 (1987)
Broder, A.: A taxonomy of Web search. SIGIR Forum 36(2), 3–10 (2002)
Brown, S.M.: Decision theoretic approach for interface agent development. Ph.D. thesis, Air Force Institute of Technology (1998)
Campbell, I., van Rijsbergen, C.J.: Ostensive model of developing information needs. In: Proceedings of the Second International Conference on Conceptions of Library and Information Science: Integration in Perspective (CoLIS 2), pp. 251–268 (1996)
Cecchini, R.L., Lorenzetti, C.M., Maguitman, A.G., Brignole, N.B.: Using genetic algorithms to evolve a population of topical queries. Inf. Process. Manage. 44(6), 1863–1878 (2008)
Chen, S.Y., Magoulas, G.D., Dimakopoulos, D.: A flexible interface design for Web directories to accommodate different cognitive styles. J. Am. Soc. Inform. Sci. Technol. 56(1), 70–83 (2005)
Cooper, W., Maron, M.E.: Foundations of probabilistic and utility theoretic indexing. J. Assoc. Comput. Mach. 25(1), 67–80 (1978)
Donghee, Y.: Hybrid query processing for personalized information retrieval on the Semantic Web. Knowl.-Based Syst. 27, 211–218 (2012)
Drucker, H., Shahrary, B., Gibbon, C.: Support vector machines: relevance feedback and information retrieval. Inf. Process. Manage. 38(3), 305–323 (2002)
Ducheneaut, N., Partidge, K., Huang, Q., Price, B., Roberts, M., Chi, E.H., Belotti, V., Begole, B.: Collaborative filtering is not enough? Experiments with a mixed-model recommender for leisure activities. In: Proceeding of the Seventeenth International Conference, User Modeling, Adaptation, and Personalization, pp. 295–306. Trento, Italy (2009)
Duong H.T., Uddin, M.N., Lim D., Jo, G.: A collaborative ontology-based user profiles system. In: Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems, pp. 540–552 (2009)
Efthimis, E.N.: Query expansion. In: Williams, M. (ed.) Ann Rev Inf Sci Technol 31, 121–187 (1996)
Frake, W.B., Baeza-Yates, R.: Information retrieval: data structures and algorithms, p. 07458. Prentice Hall PTR, Upper Saddle River (1992)
Ghorab M.R., Zhou D., O’Connor A., Wade, V.: Personalised information retrieval: survey and classification. User Modeling and User-Adapted Interaction. Online first (2012)
He, B., Ounis, I.: Inferring query performance using pre-retrieval predictors’. In: Information Systems, Special Issue for the String Processing and Information Retrieval: 11th International Conference, pp. 43–54 (2004)
Ide, E.: New experiment in relevance feedback. In: The Smart System Experiments in Automatic Documents Processing, pp. 337–354 (1971)
Ingwersen, P.: Information Retrieval Interaction. Taylor Graham, London (1992)
Jansen, B., Booth, D., Spink, A. Determining the user intent of Web search engine queries. In: Proceedings of the International World Wide Web Conference, pp. 1149–1150. Alberta, Canada (2007)
Jensen, F.V.: An Introduction to Bayesian Networks. University College London Press, London (1996)
Keeney, L.R., Raiffa, H.: Decision with Multiple Objectives: Preferences and Value Tradeoffs. Wiley, New York (1976)
Kim, J.: Describing and predicting information-seeking behavior on the Web. J. Am. Soc. Inform. Sci. Technol. 60(4), 679–693 (2009)
Kofler, C., Lux, M.: Dynamic presentation adaptation based on user intent classification. In: Proceedings of the 17th ACM International Conference on Multimedia (MM ‘09), pp. 1117–1118. ACM, New York, USA (2009)
Kumaran, G., Allan, J.: Adapting information retrieval systems to user queries. Inf. Process. Manage. 44(6), 1838–1862 (2008)
Lau, T., Horvitz, E.: Patterns of search: analyzing and modeling Web query refinement. In: Proceedings of the Seventh International Conference on User Modeling, pp. 119–128. Banff, Canada (1999)
Lee, U., Liu, Z., Cho, J.: Automatic identification of user goals in web search. In: Proceedings of the International World Wide Web Conference 2005, pp. 391–400. Chiba, Japan (2005)
Logan, B., Reece, S., Sparck, J.: Modeling information retrieval agents with belief revision. In: Proceedings of the Seventeenth Annual ACM/SIGIR Conference on Research and Development in Information Retrieval, pp. 91–100 (1994)
Lopér-Pujalte, C., Guerrero-Bote, V., Moya-Anegon, F.D.: Genetic algorithms in relevance feedback: a second test and new contributions. Inf. Process. Manage. 39(5), 669–697 (2003)
Lynch, C.: The next generation of public access information retrieval systems for research libraries: lessons from ten years of the MELVYL system. Inf. Technol. Libr. 11(4), 405–415 (1992)
Mat-Hassan, M., Levene, M.: Associating search and navigation behavior through log analysis. J. Am. Soc. Inform. Sci. Technol. 56(9), 913–934 (2005)
Michard, M.: Graphical presentation of boolean expressions in a database query language: design notes and an ergonomic evaluation. Behav. Inf. Technol. 1(3), 279–288 (1982)
Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)
Nguyen, H.: Capturing user intent for information retrieval. Ph.D. Dissertation, University of Connecticut (2005)
Nguyen, H., Haddawy, P.: The decision-theoretic interactive video advisor. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence- UAI 99, pp. 494–501. Stockholm, Sweden (1999)
Nguyen, H., Santos, E. Jr, Schuet, A., Smith, N.: Hybrid user model for information retrieval. In: Technical Report of Modeling Others from Observations workshop at Twenty-First National Conference on Artificial Intelligence (AAAI) conference, pp. 61–68. Boston (2006)
Nguyen, H., Santos, E.J., Zhao, Q., Lee, C.: Evaluation of effects on retrieval performance for an adaptive user model. In: Adaptive Hypermedia 2004 Workshop Proceedings—Part I, pp. 193–202., Eindhoven, The Netherlands (2004a)
Nguyen, H., Santos, E.J., Zhao, Q., Wang, H.: Capturing user intent for information retrieval. In: Proceedings of the Human Factors and Ergonomics Society 48th Annual Meeting, pp. 371–375. New Orleans, LA (2004b)
Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Mateo (1988)
Rich, E.: User modeling via stereotypes. Cogn. Sci. 3, 329–354 (1979)
Rich, E.: Users are individuals: individualizing user models. Int. J. Man Mach. Stud. 18, 199–214 (1983)
Rochio, J.J.: Relevance feedback in information retrieval. In: The Smart system—experiments in automatic document processing, pp. 313–323 (1971)
Rose, D., Levinson, D.: Understanding user goals in Web search. In: Proceedings of the International World Wide Web Conference 2004, pp. 13–19. New York, USA (2004)
Ruthven, I., Lalmas, M.: A survey on the use of relevance feedback for information access systems. Knowl. Eng. Rev. 18(2), 95–145 (2003)
Ruthven, I., Lalmas, M., van Rijsbergen, K.: Incorporating user search behavior into relevance feedback. J. Am. Soc. Inform. Sci. Technol. 54(6), 529–549 (2003)
Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback. J. Am. Soc. Inf. Sci. 41(4), 288–297 (1990)
Santos, E.J., Nguyen, H.: Modeling users for adaptive information retrieval by capturing user intent. In: Chevalier, M., Julien, C., Soulé, C. (eds.) Collaborative and Social Information Retrieval and Access: Techniques for Improved User Modeling, pp. 88–118. IGI Global (2009)
Santos, E.J., Nguyen, H., Brown, S.M.: Kavanah: an active user interface for information retrieval application. In: Proceedings of 2nd Asia-Pacific Conference on Intelligent Agent Technology, pp. 412–423, Japan (2001)
Santos, E.J., Nguyen, H., Zhao, Q., Pukinskis, E.: Empirical evaluation of adaptive user modeling in a medical information retrieval application. In: Proceedings of the Ninth User Modeling Conference, pp. 292–296, Johnstown (2003a)
Santos, E.J., Nguyen, H., Zhao, Q., Wang, H.: User modeling for intent prediction in information analysis. In: Proceedings of the 47th Annual Meeting for the Human Factors and Ergonomics Society (HFES-03), pp. 1034–1038, Denver (2003b)
Saracevic, T.: Relevance reconsidered. In: Ingwersen, P., Pors, P.O. (eds.) Proceedings of the Second International Conference on Conceptions of Library and Information Science: Integration in Perspective. Copenhagen: The Royal School of Librarianship, pp. 201–218 (1996)
Saracevic, T., Spink A., Wu, M.: Users and intermediaries in information retrieval: what are they talking about? In: Proceedings of the Sixth International Conference in User Modeling - UM 97, pp. 43–54 (1997)
Sleator, D.D., Temperley D.: Parsing English with a link grammar. In: Proceedings of the Third International Workshop on Parsing Technologies, pp. 277–292 (1993)
Spink, A., Cole, C.: New Directions in Cognitive Information Retrieval. The Information Retrieval Series. Springer (2005)
Spink, A., Losee, R.M.: Feedback in information retrieval. In: Williams, M. (ed.) Ann.Rev. Inf. Sci. Technol. 31, 33–78 (1996)
Spink, A., Greisdorf, H., Bateman, J.: From highly relevant to not relevant: examining different regions of relevance. Inf. Process. Manage. 34(5), 599–621 (1998)
Steichen, B., Ashman, H., Wade, V.: A comparative survey of personalised information retrieval and adaptive hypermedia techniques. Inf. Process. Manage. 48, 698–724 (2012)
Truran, M., Schmakeit, J., Ashman, H.: The effect of user intent on the stability of search engine results. J. Am. Soc. Inform. Sci. Technol. 62(7), 1276–1287 (2011)
Vickery, A., Brooks, H.: Plexus: the expert system for referral. Inf. Process. Manage. 23(2), 99–117 (1987)
Voorhees, M.E.: On test collections for adaptive information retrieval. Inf. Process. Manage. 44(6), 1879–1885 (2008)
Xie, Y., Raghavan, V.V.: Language-modeling kernel based approach for information retrieval. J. Am. Soc. Inform. Sci. Technol. 58(14), 2353–2365 (2007)
Zanker, M., Jessenitschnig, M.: Case-studies on exploiting explicit customer requirements in recommender systems. User Model. User-Adap. Inter. 19(1–2), 133–166 (2009)
Zhang, Y.: Complex adaptive filtering user profile using graphical models. Inf. Process. Manage. 44(6), 1886–1900 (2008)
Zhao, Q., Santos, E.J., Nguyen, H., Mohammed, M.: What makes a good summary? In: Argamon, S., Howard, N. (eds.) Computational Methods for Counterterrorism, pp. 33–50. Springer, New York, (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Nguyen, H., Santos, E. (2013). Hybrid User Model for Capturing a User’s Information Seeking Intent. In: Tsihrintzis, G., Virvou, M., Jain, L. (eds) Multimedia Services in Intelligent Environments. Smart Innovation, Systems and Technologies, vol 24. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00372-6_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-00372-6_3
Published:
Publisher Name: Springer, Heidelberg
Print ISBN: 978-3-319-00371-9
Online ISBN: 978-3-319-00372-6
eBook Packages: EngineeringEngineering (R0)