Nothing Special   »   [go: up one dir, main page]

Skip to main content

Optimal Design for Count Data with Binary Predictors in Item Response Theory

  • Conference paper
mODa 10 – Advances in Model-Oriented Design and Analysis

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Abstract

The Rasch Poisson counts model (RPCM) allows for the analysis of mental speed which represents a basic component of human intelligence. An extended version of the RPCM, which incorporates covariates in order to explain the difficulty, provides a means for modern rule-based item generation. After a short introduction to the extended RPCM we develop locally D-optimal calibration designs for this model. To this end the RPCM is embedded in a particular generalized linear model. Finally, the robustness of the derived designs is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Cox, D.R.: A note on design when response has an exponential family distribution. Biometrika 75, 161–164 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Graßhoff, U., Schwabe, R.: Optimal design for the Bradley-Terry paired comparison model. Stat. Methods Appl. 17, 275–289 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Graßhoff, U., Großmann, H., Holling, H., Schwabe, R.: Design optimality for main effects in linear paired comparison models. J. Stat. Plan. Inference 126, 361–376 (2004)

    Article  MATH  Google Scholar 

  • Graßhoff, U., Holling, H., Schwabe, R.: Optimal designs for linear logistic test models. In: Givovagnoli, A., Atkinson, A., Torsney, B. (eds.) mODa 9—Advances in Model-Oriented Design and Analysis, pp. 97–104. Physica-Verlag, Berlin (2010)

    Chapter  Google Scholar 

  • Jäger, A.: Intelligenzstrukturforschung: Konkurrierende Modelle, neue Entwicklungen. Perspektiven 35, 21–35 (1984)

    Google Scholar 

  • Jansen, M.: Rasch’s model for reading speed with manifest explanatory variables. Psychometrika 62, 393–409 (1997)

    Article  MATH  Google Scholar 

  • Kiefer, J.: General equivalence theory for optimum designs (approximate theory). Ann. Stat. 2, 849–879 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Rasch, G.: Probabilistic Models for Some Intelligence and Attainment Tests. Danish Institute for Educational Research, Copenhagen (1960)

    Google Scholar 

  • Russell, K., Woods, D., Lewis, S., Eccleston, J.: D-optimal designs for Poisson regression models. Stat. Sin. 19, 721–730 (2009)

    MathSciNet  MATH  Google Scholar 

  • Silvey, D.: Optimal Design. Chapman & Hall, London (1980)

    Book  MATH  Google Scholar 

  • Verhelst, N.D., Kamphuis, F.H.: A Poisson-Gamma model for speed tests. Tech. Rep. 2009-2, Cito, Arnhem (2009)

    Google Scholar 

  • Yang, J., Mandal, A., Majumdar, D.: Optimal designs for two-level factorial experiments with binary response. Stat. Sin. 22, 885–907 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant HO 1286/6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Graßhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Graßhoff, U., Holling, H., Schwabe, R. (2013). Optimal Design for Count Data with Binary Predictors in Item Response Theory. In: Ucinski, D., Atkinson, A., Patan, M. (eds) mODa 10 – Advances in Model-Oriented Design and Analysis. Contributions to Statistics. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00218-7_14

Download citation

Publish with us

Policies and ethics