Abstract
Morphologically evolving robot systems need to include a learning period right after ‘birth’ to acquire a controller that fits the newly created body. In this paper, we investigate learning one skill in particular: walking in a given direction. To this end, we apply the HyperNEAT algorithm guided by a fitness function that balances the distance travelled in a direction and the deviation between the desired and the actually travelled directions. We validate this method on a variety of modular robots with different shapes and sizes and observe that the best controllers produce trajectories that accurately follow the correct direction and reach a considerable distance in the given test interval.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Aoi, S., Manoonpong, P., Ambe, Y., Matsuno, F., Wörgötter, F.: Adaptive control strategies for interlimb coordination in legged robots: a review. Front. Neurorobotics 11, 39 (2017)
Auerbach, J., et al.: RoboGen: robot generation through artificial evolution. In: Sayama, H., Rieffel, J., Risi, S., Doursat, R., Lipson, H. (eds.) Artificial Life 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems, pp. 136–137. The MIT Press, New York, July 2014
Auerbach, J.E., Bongard, J.C.: On the relationship between environmental and morphological complexity in evolved robots. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, pp. 521–528. GECCO 2012. ACM, New York (2012)
Beer, R.D.: The Dynamics of Brain–Body–Environment Systems: A Status Report (2008)
Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-modeling. Science 314(5802), 1118–1121 (2006)
Bongard, J.C.: Evolutionary robotics. Commun. ACM 56(8), 74–83 (2013)
Chatterjee, S., et al.: Reinforcement learning approach to generate goal-directed locomotion of a snake-like robot with screw-drive units. In: 2014 23rd International Conference on Robotics in Alpe-Adria-Danube Region (RAAD), pp. 1–7, September 2014
Clune, J., Beckmann, B.E., Ofria, C., Pennock, R.T.: Evolving coordinated quadruped gaits with the hyperneat generative encoding. In: 2009 IEEE Congress on Evolutionary Computation, pp. 2764–2771, May 2009
Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like animals. Nature 521, 503 (2015)
Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.: Evolutionary robotics: what, why, and where to. Front. Robot. AI 2(4) (2015)
Eiben, A., et al.: The triangle of life: evolving robots in real-time and real-space. In: Liò, P., Miglino, O., Nicosia, G., Nolfi, S., Pavone, M. (eds.) Advances In Artificial Life, ECAL 2013, pp. 1056–1063. MIT Press (2013)
Eiben, A., Kernbach, S., Haasdijk, E.: Embodied artificial evolution. Evol. Intell. 5(4), 261–272 (2012)
Eiben, A., Smith, J.: From evolutionary computation to the evolution of things. Nature 521(7553), 476–482 (2015)
Eiben, A.E.: In vivo veritas: towards the evolution of things. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 24–39. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_3
Grillner, S., Wallén, P., Saitoh, K., Kozlov, A., Robertson, B.: Neural bases of goal-directed locomotion in vertebrates-an overview. Brain Res. Rev. 57(1), 2–12 (2008)
Haasdijk, E., Rusu, A.A., Eiben, A.E.: HyperNEAT for locomotion control in modular robots. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds.) ICES 2010. LNCS, vol. 6274, pp. 169–180. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15323-5_15
Hooper, S.L.: Central pattern generators. In: Encyclopedia of Life Sciences, pp. 1–12, April 2001. https://doi.org/10.1038/npg.els.0000032
Hupkes, E., Jelisavcic, M., Eiben, A.E.: Revolve: a versatile simulator for online robot evolution. In: Sim, K., Kaufmann, P. (eds.) EvoApplications 2018. LNCS, vol. 10784, pp. 687–702. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77538-8_46
Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008). Robotics and Neuroscience
Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007)
Jelisavcic, M., et al.: Real-world evolution of robot morphologies: a proof of concept. Artif. Life 23(2), 206–235 (2017)
Jelisavcic, M., Carlo, M.D., Haasdijk, E., Eiben, A.E.: Improving RL power for on-line evolution of gaits in modular robots. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8, December 2016
Jelisavcic, M., Haasdijk, E., Eiben, A.: Acquiring moving skills in robots with evolvable morphologies: recent results and outlook. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2017 (2017)
Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.: Automatic locomotion design and experiments for a modular robotic system. IEEE/ASME Trans. Mech. 10(3), 314–325 (2005)
Kamimura, A., Kurokawa, H., Yoshida, E., Tomita, K., Kokaji, S., Murata, S.: Distributed adaptive locomotion by a modular robotic system, M-TRAN II. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), vol. 3, pp. 2370–2377, September 2004
Kohl, N., Stone, P.: Policy gradient reinforcement learning for fast quadrupedal locomotion. In: IEEE International Conference on 2004 Proceedings of Robotics and Automation, ICRA 2004, vol. 3, pp. 2619–2624 (2004)
Marder, E., Bucher, D.: Central pattern generators and the control of rhythmic movements. Curr. Biol. 11(23), R986–R996 (2001)
Matos, V., Santos, C.P.: Towards goal-directed biped locomotion: combining CPGs and motion primitives. Robot. Auton. Syst. 62(12), 1669–1690 (2014)
Paul, S., Chatzilygeroudis, K., Ciosek, K., Mouret, J.B., Osborne, M.A., Whiteson, S.: Alternating optimisation and quadrature for robust control. In: The Thirty-Second AAAI Conference on Artificial Intelligence, AAAI 2018 (2018)
Pfeifer, R., Bongard, J.C.: How the Body Shapes the Way We Think: A New View of Intelligence (Bradford Books). The MIT Press, Cambridge (2006)
Roijers, D.M., Whiteson, S.: Multi-objective decision making. Synth. Lect. Artif. Intell. Mach. Learn. 11(1), 1–129 (2017)
Sproewitz, A., Moeckel, R., Maye, J., Ijspeert, A.J.: Learning to move in modular robots using central pattern generators and online optimization. Int. J. Robot. Res. 27(3–4), 423–443 (2008)
Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of development. Genet. Program. Evolvable Mach. 8(2), 131–162 (2007)
Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)
Weel, B., D’Angelo, M., Haasdijk, E., Eiben, A.: Online gait learning for modular robots with arbitrary shapes and sizes. Artif. life 23(1), 80–104 (2017)
Yosinski, J., Clune, J., Hidalgo, D., Nguyen, S., Zagal, J.C., Lipson, H.: Evolving robot gaits in hardware: the hyperneat generative encoding vs. parameter optimization. In: Proceedings of the 20th European Conference on Artificial Life, pp. 890–897 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Lan, G., Jelisavcic, M., Roijers, D.M., Haasdijk, E., Eiben, A.E. (2018). Directed Locomotion for Modular Robots with Evolvable Morphologies. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11101. Springer, Cham. https://doi.org/10.1007/978-3-319-99253-2_38
Download citation
DOI: https://doi.org/10.1007/978-3-319-99253-2_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99252-5
Online ISBN: 978-3-319-99253-2
eBook Packages: Computer ScienceComputer Science (R0)