Nothing Special   »   [go: up one dir, main page]

Skip to main content

Virtual Machine Profiling for Analyzing Resource Usage of Applications

  • Conference paper
  • First Online:
Services Computing – SCC 2018 (SCC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10969))

Included in the following conference series:

Abstract

From the cloud provider perspective, applications are usually black boxes hosted on Virtual Machines. Managing these black boxes without knowing anything about the features of the workload can generate inefficiencies in the performance. In fact, this information can be relevant to take deployment decisions which consist both in considering the interferences between applications with similar resources demands and predicting future peak demands avoiding performance degradation. Monitoring applications in cloud facilities and data centers is the only approach to manage and ensure the performance level of the hosted applications. This paper considers applications as black boxes and, using monitoring data analysis of the VMs on which applications are running, provides a methodology for building an application profile reflecting relevant behavioral features of a VM. This information is precious to lead deployment and adaptive decisions in data center management. The approach is validated on a real monitoring data set of an Italian data center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 13.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://eco2clouds.eu.

  2. 2.

    Information on migrations is available in the monitoring data of the data center.

References

  1. Aceto, G., Botta, A., De Donato, W., Pescapè, A.: Cloud monitoring: a survey. Comput. Netw. 57(9), 2093–2115 (2013)

    Article  Google Scholar 

  2. Awasthi, M., Suri, T., Guz, Z., Shayesteh, A., Ghosh, M., Balakrishnan, V.: System-level characterization of datacenter applications. In: Proceedings of the 6th ACM/SPEC International Conference on Performance Engineering, Austin, TX, USA, 31 January–4 February, 2015, pp. 27–38 (2015)

    Google Scholar 

  3. Cappiello, C., Ho, T.T.N., Pernici, B., Plebani, P., Vitali, M.: CO\({}_{\text{2 }}\)-aware adaptation strategies for cloud applicationDs. IEEE Trans. Cloud Comput. 4(2), 152–165 (2016)

    Article  Google Scholar 

  4. Da Cunha Rodrigues, G., Calheiros, R.N., Guimaraes, V.T., d. Santos, G.L., de Carvalho, M.B., Granville, L.Z., Tarouco, L.M.R., Buyya, R.: Monitoring of cloud computing environments: concepts, solutions, trends, and future directions. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing, pp. 378–383. ACM (2016)

    Google Scholar 

  5. Fadda, E., Plebani, P., Vitali, M.: Optimizing monitorability of multi-cloud applications. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 411–426. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_25

    Chapter  Google Scholar 

  6. Huusko, J., de Meer, H., Klingert, S., Somov, A. (eds.): E2DC 2012. LNCS, vol. 7396. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33645-4

    Book  Google Scholar 

  7. Loboz, C., Smyl, S., Nath, S.: Datagarage: warehousing massive performance data on commodity servers. Proc. VLDB Endow. 3(1–2), 1447–1458 (2010)

    Article  Google Scholar 

  8. Moreno, I.S., Yang, R., Xu, J., Wo, T.: Improved energy-efficiency in cloud datacenters with interference-aware virtual machine placement. In: 11th International Symposium on Autonomous Decentralized Systems, ISADS 2013, Mexico City, Mexico, 6–8 March 2013, pp. 1–8 (2013)

    Google Scholar 

  9. Nasim, R., Taheri, J., Kassler, A.J.: Optimizing virtual machine consolidation in virtualized datacenters using resource sensitivity. In: 2016 IEEE International Conference on Cloud Computing Technology and Science, CloudCom 2016, Luxembourg, 12–15 December 2016, pp. 168–175 (2016)

    Google Scholar 

  10. Peng, J., Chen, J., Zhi, X., Qiu, M., Xie, X.: Research on application classification method in cloud computing environment. J. Supercomput. 73(8), 3488–3507 (2017)

    Article  Google Scholar 

  11. Rameshan, N., Navarro, L., Monte, E., Vlassov, V.: Stay-Away, protecting sensitive applications from performance interference. In: Proceedings of the 15th International Middleware Conference, Bordeaux, France, 8–12 December 2014, pp. 301–312 (2014)

    Google Scholar 

  12. Taheri, J., Zomaya, A.Y., Kassler, A.: vmBBThrPred: a black-box throughput predictor for virtual machines in cloud environments. In: Aiello, M., Johnsen, E.B., Dustdar, S., Georgievski, I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 18–33. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44482-6_2

    Chapter  Google Scholar 

  13. Taheri, J., Zomaya, A.Y., Kassler, A.: vmBBProfiler: a black-box profiling approach to quantify sensitivity of virtual machines to shared cloud resources. Computing 99(12), 1149–1177 (2017)

    Article  Google Scholar 

  14. Vasudevan, M., Tian, Y., Tang, M., Kozan, E.: Profile-based application assignment for greener and more energy-efficient data centers. Future Gener. Comp. Syst. 67, 94–108 (2017)

    Article  Google Scholar 

  15. Verboven, S., Vanmechelen, K., Broeckhove, J.: Black box scheduling for resource intensive virtual machine workloads with interference models. Future Gener. Comp. Syst. 29(8), 1871–1884 (2013)

    Article  Google Scholar 

  16. Vitali, M., Pernici, B.: A survey on energy efficiency in information systems. Int. J. Coop. Inf. Syst. 23(3), 1450001 (2014)

    Article  Google Scholar 

  17. Vlachos, M., Philip, S.Y., Castelli, V.: On periodicity detection and structural periodic similarity. In: SDM, vol. 5, pp. 449–460. SIAM (2005)

    Chapter  Google Scholar 

  18. VMware Knowledge Base. Virtual machine CPU usage alarm (2015)

    Google Scholar 

  19. VMware Knowledge Base. Virtual machine memory usage alarm (2015)

    Google Scholar 

  20. Wajid, U., Cappiello, C., Plebani, P., Pernici, B., Mehandjiev, N., Vitali, M., Gienger, M., Kavoussanakis, K., Margery, D., García-Pérez, D., Sampaio, P.: On achieving energy efficiency and reducing CO\({}_{\text{2 }}\) footprint in cloud computing. IEEE Trans. Cloud Comput. 4(2), 138–151 (2016)

    Article  Google Scholar 

  21. Wang, C., Schwan, K., Talwar, V., Eisenhauer, G., Hu, L., Wolf, M.: A flexible architecture integrating monitoring and analytics for managing large-scale data centers. In: Proceedings of the 8th ACM International Conference on Autonomic Computing, ICAC 2011, pp. 141–150 (2011)

    Google Scholar 

  22. Wang, L., Khan, S.U., Dayal, J.: Thermal aware workload placement with task-temperature profiles in a data center. J. Supercomput. 61(3), 780–803 (2012)

    Article  Google Scholar 

  23. Wolke, A.: Energy efficient capacity management in virtualized data centers. Ph.D. thesis, Technical University Munich (2015)

    Google Scholar 

Download references

Acknowledgments

The authors thank the company Eco4Cloud (http://www.eco4cloud.com.) for sharing monitoring data for the purpose of this analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Vitali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, X., Pernici, B., Vitali, M. (2018). Virtual Machine Profiling for Analyzing Resource Usage of Applications. In: Ferreira, J., Spanoudakis, G., Ma, Y., Zhang, LJ. (eds) Services Computing – SCC 2018. SCC 2018. Lecture Notes in Computer Science(), vol 10969. Springer, Cham. https://doi.org/10.1007/978-3-319-94376-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94376-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94375-6

  • Online ISBN: 978-3-319-94376-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics