Abstract
From the cloud provider perspective, applications are usually black boxes hosted on Virtual Machines. Managing these black boxes without knowing anything about the features of the workload can generate inefficiencies in the performance. In fact, this information can be relevant to take deployment decisions which consist both in considering the interferences between applications with similar resources demands and predicting future peak demands avoiding performance degradation. Monitoring applications in cloud facilities and data centers is the only approach to manage and ensure the performance level of the hosted applications. This paper considers applications as black boxes and, using monitoring data analysis of the VMs on which applications are running, provides a methodology for building an application profile reflecting relevant behavioral features of a VM. This information is precious to lead deployment and adaptive decisions in data center management. The approach is validated on a real monitoring data set of an Italian data center.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Information on migrations is available in the monitoring data of the data center.
References
Aceto, G., Botta, A., De Donato, W., Pescapè, A.: Cloud monitoring: a survey. Comput. Netw. 57(9), 2093–2115 (2013)
Awasthi, M., Suri, T., Guz, Z., Shayesteh, A., Ghosh, M., Balakrishnan, V.: System-level characterization of datacenter applications. In: Proceedings of the 6th ACM/SPEC International Conference on Performance Engineering, Austin, TX, USA, 31 January–4 February, 2015, pp. 27–38 (2015)
Cappiello, C., Ho, T.T.N., Pernici, B., Plebani, P., Vitali, M.: CO\({}_{\text{2 }}\)-aware adaptation strategies for cloud applicationDs. IEEE Trans. Cloud Comput. 4(2), 152–165 (2016)
Da Cunha Rodrigues, G., Calheiros, R.N., Guimaraes, V.T., d. Santos, G.L., de Carvalho, M.B., Granville, L.Z., Tarouco, L.M.R., Buyya, R.: Monitoring of cloud computing environments: concepts, solutions, trends, and future directions. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing, pp. 378–383. ACM (2016)
Fadda, E., Plebani, P., Vitali, M.: Optimizing monitorability of multi-cloud applications. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 411–426. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_25
Huusko, J., de Meer, H., Klingert, S., Somov, A. (eds.): E2DC 2012. LNCS, vol. 7396. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33645-4
Loboz, C., Smyl, S., Nath, S.: Datagarage: warehousing massive performance data on commodity servers. Proc. VLDB Endow. 3(1–2), 1447–1458 (2010)
Moreno, I.S., Yang, R., Xu, J., Wo, T.: Improved energy-efficiency in cloud datacenters with interference-aware virtual machine placement. In: 11th International Symposium on Autonomous Decentralized Systems, ISADS 2013, Mexico City, Mexico, 6–8 March 2013, pp. 1–8 (2013)
Nasim, R., Taheri, J., Kassler, A.J.: Optimizing virtual machine consolidation in virtualized datacenters using resource sensitivity. In: 2016 IEEE International Conference on Cloud Computing Technology and Science, CloudCom 2016, Luxembourg, 12–15 December 2016, pp. 168–175 (2016)
Peng, J., Chen, J., Zhi, X., Qiu, M., Xie, X.: Research on application classification method in cloud computing environment. J. Supercomput. 73(8), 3488–3507 (2017)
Rameshan, N., Navarro, L., Monte, E., Vlassov, V.: Stay-Away, protecting sensitive applications from performance interference. In: Proceedings of the 15th International Middleware Conference, Bordeaux, France, 8–12 December 2014, pp. 301–312 (2014)
Taheri, J., Zomaya, A.Y., Kassler, A.: vmBBThrPred: a black-box throughput predictor for virtual machines in cloud environments. In: Aiello, M., Johnsen, E.B., Dustdar, S., Georgievski, I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 18–33. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44482-6_2
Taheri, J., Zomaya, A.Y., Kassler, A.: vmBBProfiler: a black-box profiling approach to quantify sensitivity of virtual machines to shared cloud resources. Computing 99(12), 1149–1177 (2017)
Vasudevan, M., Tian, Y., Tang, M., Kozan, E.: Profile-based application assignment for greener and more energy-efficient data centers. Future Gener. Comp. Syst. 67, 94–108 (2017)
Verboven, S., Vanmechelen, K., Broeckhove, J.: Black box scheduling for resource intensive virtual machine workloads with interference models. Future Gener. Comp. Syst. 29(8), 1871–1884 (2013)
Vitali, M., Pernici, B.: A survey on energy efficiency in information systems. Int. J. Coop. Inf. Syst. 23(3), 1450001 (2014)
Vlachos, M., Philip, S.Y., Castelli, V.: On periodicity detection and structural periodic similarity. In: SDM, vol. 5, pp. 449–460. SIAM (2005)
VMware Knowledge Base. Virtual machine CPU usage alarm (2015)
VMware Knowledge Base. Virtual machine memory usage alarm (2015)
Wajid, U., Cappiello, C., Plebani, P., Pernici, B., Mehandjiev, N., Vitali, M., Gienger, M., Kavoussanakis, K., Margery, D., García-Pérez, D., Sampaio, P.: On achieving energy efficiency and reducing CO\({}_{\text{2 }}\) footprint in cloud computing. IEEE Trans. Cloud Comput. 4(2), 138–151 (2016)
Wang, C., Schwan, K., Talwar, V., Eisenhauer, G., Hu, L., Wolf, M.: A flexible architecture integrating monitoring and analytics for managing large-scale data centers. In: Proceedings of the 8th ACM International Conference on Autonomic Computing, ICAC 2011, pp. 141–150 (2011)
Wang, L., Khan, S.U., Dayal, J.: Thermal aware workload placement with task-temperature profiles in a data center. J. Supercomput. 61(3), 780–803 (2012)
Wolke, A.: Energy efficient capacity management in virtualized data centers. Ph.D. thesis, Technical University Munich (2015)
Acknowledgments
The authors thank the company Eco4Cloud (http://www.eco4cloud.com.) for sharing monitoring data for the purpose of this analysis.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Peng, X., Pernici, B., Vitali, M. (2018). Virtual Machine Profiling for Analyzing Resource Usage of Applications. In: Ferreira, J., Spanoudakis, G., Ma, Y., Zhang, LJ. (eds) Services Computing – SCC 2018. SCC 2018. Lecture Notes in Computer Science(), vol 10969. Springer, Cham. https://doi.org/10.1007/978-3-319-94376-3_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-94376-3_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94375-6
Online ISBN: 978-3-319-94376-3
eBook Packages: Computer ScienceComputer Science (R0)