Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Note on the Distribution of Primes in Intervals

  • Chapter
  • First Online:
Irregularities in the Distribution of Prime Numbers
  • 900 Accesses

Abstract

Assuming a certain form of the Hardy–Littlewood prime tuples conjecture, we show that, given any positive numbers λ 1, …, λ r and nonnegative integers m 1, …, m r, the proportion of positive integers \(n {\leqslant } x\) for which, for each \(j {\leqslant } r\), the interval \((n, n + (\lambda _1 + \cdots + \lambda _j)\log x]\) contains exactly m 1 + ⋯ + m j primes, is asymptotically equal to \(\prod _{j = 1}^r( {\mathrm {e}}^{-\lambda _j}\lambda ^{m_j}/m_j!)\) as x →. This extends a result of Gallagher, who considered the case r = 1. We use a direct inclusion–exclusion argument in place of Gallagher’s moment calculation, thereby avoiding recourse to the moment determinacy property of Poisson distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. W.D. Banks, T. Freiberg, J. Maynard, On limit points of the sequence of normalized prime gaps. Proc. Lond. Math. Soc. 3, 113, 515–539 (2016)

    Article  MathSciNet  Google Scholar 

  2. C. David, D. Koukoulopoulos, E. Smith, Sums of Euler products and statistics of elliptic curves. Math. Ann. 368, 685–752 (2017)

    Article  MathSciNet  Google Scholar 

  3. K. Ford, Simple proof of Gallagher’s singular series sum estimate (2011). Preprint. arXiv:1108.3861

    Google Scholar 

  4. T. Freiberg, Short intervals with a given number of primes. J. Number Theory 163, 159–171 (2016)

    Article  MathSciNet  Google Scholar 

  5. P.X. Gallagher, On the distribution of primes in short intervals. Mathematika 23, 4–9 (1976)

    Article  MathSciNet  Google Scholar 

  6. D.A. Goldston, J. Pintz, C.Y. Yıldırım, Primes in tuples I. Ann. Math. 2 170, 819–862 (2009)

    Article  MathSciNet  Google Scholar 

  7. A. Granville, P. Kurlberg, Poisson statistics via the Chinese remainder theorem. Adv. Math. 218, 2013–2042 (2008)

    Article  MathSciNet  Google Scholar 

  8. G.H. Hardy, L.E. Littlewood, Some problems of ‘Partitio numerorum’; III: on the expression of a number as a sum of primes. Acta Math. 44, 1–70 (1923)

    MATH  Google Scholar 

  9. A. Hildebrand, H. Maier, Gaps between prime numbers. Proc. Am. Math. Soc. 104, 1–9 (1988)

    Article  MathSciNet  Google Scholar 

  10. C. Hooley, On the difference between consecutive numbers prime to n. III Math. Z. 90, 355–364 (1965)

    Article  MathSciNet  Google Scholar 

  11. C. Hooley, On the intervals between consecutive terms of sequences, in Proceedings of the Symposium in Pure Mathematics of the American Mathematical Society, held at St. Louis University, St. Louis, MO, March 27–30, 1972, ed. by H.G. Diamond. Proceedings of Symposia in Pure Mathematics, vol. XXIV (American Mathematical Society, Providence, RI, 1973), pp. 129–140

    Google Scholar 

  12. N.M. Katz, P. Sarnak, Random Matrices, Frobenius Eigenvalues, and Monodromy. American Mathematical Society Colloquium Publications, vol. 45 (American Mathematical Society, Providence, RI, 1999)

    Google Scholar 

  13. E. Kowalski, Averages of Euler products, distribution of singular series and the ubiquity of Poisson distribution. Acta Arith. 148, 153–187 (2011)

    Article  MathSciNet  Google Scholar 

  14. P. Kurlberg, The distribution of spacings between quadratic residues. II. Isr. J. Math. 120, 205–224 (2000)

    Article  MathSciNet  Google Scholar 

  15. P. Kurlberg, Poisson spacing statistics for value sets of polynomials. Int. J. Number Theory 5, 489–513 (2009)

    Article  MathSciNet  Google Scholar 

  16. P. Kurlberg, Z. Rudnick, The distribution of spacings between quadratic residues. Duke Math. J. 100, 211–242 (1999)

    Article  MathSciNet  Google Scholar 

  17. S. Lang, Algebraic Number Theory. Graduate Texts in Mathematics, 2nd edn., vol. 110 (Springer, New York, 1994)

    Book  Google Scholar 

  18. H. Maier, Primes in short intervals. Mich. Math. J. 32, 221–225 (1985)

    Article  MathSciNet  Google Scholar 

  19. J. Maynard, Small gaps between primes. Ann. Math. 2. 181, 383–413 (2015)

    Google Scholar 

  20. J. Maynard, Dense clusters of primes in subsets. Compos. Math. 152, 1517–1554 (2016)

    Article  MathSciNet  Google Scholar 

  21. H.L. Montgomery, K. Soundararajan, Primes in short intervals. Commun. Math. Phys. 252, 589–617 (2004)

    Article  MathSciNet  Google Scholar 

  22. J. Pintz, On the singular series in the prime k-tuple conjecture (2010), Preprint. arXiv:1004.1084

    Google Scholar 

  23. J. Pintz, A note on the distribution of normalized prime gaps (2015). Preprint. arXiv:1510.04577

    Google Scholar 

  24. K. Soundararajan, The distribution of prime numbers, in Equidistribution in Number Theory, An Introduction, ed. by A. Granville, Z. Rudnick. NATO Science Series. Series II, Mathematics, Physics and Chemistry, vol. 237 (Springer, Dordrech, 2007), pp. 59–83

    Google Scholar 

  25. E. Westzynthius, Über die Verteilung der Zahlen, die zu den n ersten Primzahlen teilerfremd sind. Commentat. Phys.-Math. 5, 1–37 (1931)

    MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to the anonymous referee, for carefully reading this manuscript and making corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristan Freiberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Freiberg, T. (2018). A Note on the Distribution of Primes in Intervals. In: Pintz, J., Rassias, M. (eds) Irregularities in the Distribution of Prime Numbers. Springer, Cham. https://doi.org/10.1007/978-3-319-92777-0_2

Download citation

Publish with us

Policies and ethics