Nothing Special   »   [go: up one dir, main page]

Skip to main content

Markovian Performance Evaluation with BuTools

  • Chapter
  • First Online:
Systems Modeling: Methodologies and Tools

Abstract

BuTools 2 is a collection of computational methods that are useful for Markovian and non-Markovian matrix-analytic performance analysis. It consists of various packages. There are packages to obtain, analyze, transform, and minimize discrete and continuous time phase-type (PH) distributions and Markovian arrival processes (MAP); to fit empirical measurement data and to evaluate the result; to solve many performance measures of various Markovian queueing systems; and to solve block-structured Markov chains. All three major mathematical frameworks are supported: BuTools is released for MATLAB, Mathematica and NumPy/IPython as well, with the same features, with the same call interfaces. Every function is documented, the documentation is supplemented by many examples and the related citations. BuTools uses the state-of-the art algorithms, and apart from the basic functionalities, it contains several unique, difficult to implement procedures as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This version of BuTools was available on the internet and announced through some professional mailing lists, but never got published as a tool paper. A non-exhaustive list of contributors include: Levente Bodrog, Peter Buchholz, Armin Heindl, András Horváth, István Kolossváry, András Mészáros, Zoltán Németh, János Papp Philipp Reinecke, Miklós Vécsei.

  2. 2.

    The homepage of BuTools is http://webspn.hit.bme.hu/~butools.

  3. 3.

    The source code repository is located at https://github.com/ghorvath78/butools.

References

  1. S. Asmussen, M. Bladt, Point processes with finite-dimensional probabilities. Stoch. Processes Appl. 82(1), 127–142 (1999)

    Article  MathSciNet  Google Scholar 

  2. S. Asmussen, C. O’Cinneide, Matrix-Exponential Distributions (Wiley, New York, 2004)

    Book  Google Scholar 

  3. S. Asmussen, O. Haggström, O. Nerman, EMPHT - a program for fitting phase-type distributions, in Studies in Statistical Quality Control and Reliability, Mathematical Statistics) (Chalmers University and University of Göteborg, Göteborg, 1992)

    Google Scholar 

  4. D. Bini, B. Meini, S. Steffé, B. Van Houdt, Structured Markov chains solver: software tools, in Proceeding from the 2006 Workshop on Tools for Solving Structured Markov Chains (ACM, New York, 2006), p. 14

    Google Scholar 

  5. A. Bobbio, A. Horváth, M. Telek, PhFit: a general phase-type fitting tool, in International Conference on Dependable Systems and Networks, 2002. DSN 2002. Proceedings (IEEE, New York, 2002), p. 543

    Google Scholar 

  6. A. Bobbio, A. Horváth, M. Telek, Matching three moments with minimal acyclic phase type distributions. Stoch. Model. 21(2–3), 303–326 (2005)

    Article  MathSciNet  Google Scholar 

  7. L. Bodrog, A. Heindl, G. Horváth, M. Telek, A Markovian canonical form of second-order matrix-exponential processes. Eur. J. Oper. Res. 190(2), 459–477 (2008)

    Article  MathSciNet  Google Scholar 

  8. P. Buchholz, M. Telek, On minimal representations of rational arrival processes. Ann. Oper. Res. 202(1), 35–58 (2013)

    Article  MathSciNet  Google Scholar 

  9. G. Casale, E.Z. Zhang, E. Smirni, KPC-toolbox: simple yet effective trace fitting using Markovian arrival processes, in Fifth International Conference on Quantitative Evaluation of Systems, 2008. QEST’08 (IEEE, New York, 2008), pp. 83–92

    Google Scholar 

  10. A. da Silva Soares, Fluid queues: building Upon the Analogy with QBD Processes. PhD thesis, Université Libre de Bruxelles (2005)

    Google Scholar 

  11. Q.-M. He, Age process, workload process, sojourn times, and waiting times in a discrete time SM[K]/PH[K]/1/FCFS queue. Queueing Syst. 49(3–4), 363–403 (2005)

    Article  MathSciNet  Google Scholar 

  12. G. Horváth, Matching marginal moments and lag autocorrelations with MAPs, in Proceedings of the 7th International Conference on Performance Evaluation Methodologies and Tools (2013), pp. 59–68

    Google Scholar 

  13. G. Horváth, Efficient analysis of the MMAP[K]/PH[K]/1 priority queue. Eur. J. Oper. Res. 246(1), 128–139 (2015)

    Article  MathSciNet  Google Scholar 

  14. G. Horváth, H. Okamura, A fast EM algorithm for fitting marked Markovian arrival processes with a new special structure, in European Workshop on Performance Engineering (Springer, Berlin, 2013), pp. 119–133

    Google Scholar 

  15. G. Horváth, M. Telek, On the canonical representation of phase type distributions. Perform. Eval. 66(8), 396–409 (2009)

    Article  Google Scholar 

  16. G. Horváth, M. Telek, Sojourn times in fluid queues with independent and dependent input and output processes. Perform. Eval. 79, 160–181 (2014)

    Article  Google Scholar 

  17. I. Horváth, J. Papp, M. Telek, On the canonical representation of order 3 discrete phase type distributions. Electron. Notes Theor. Comput. Sci. 318, 143–158 (2015)

    Article  Google Scholar 

  18. G. Latouche, V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, vol. 5 (Siam, Philadelphia, 1999)

    Book  Google Scholar 

  19. L. Lipsky, Queueing Theory: A Linear Algebraic Approach (Springer Science & Business Media, Berlin, 2008)

    MATH  Google Scholar 

  20. A. Mészáros, M. Telek, Canonical representation of discrete order 2 MAP and RAP, in European Workshop on Performance Engineering (Springer, Berlin, 2013), pp. 89–103

    Google Scholar 

  21. K. Mitchell, A. van de Liefvoort, Approximation models of feed-forward G/G/1/N queueing networks with correlated arrivals. Perform. Eval. 51(2), 137–152 (2003)

    Article  Google Scholar 

  22. Ş. Mocanu, C. Commault, Sparse representations of phase-type distributions. Stoch. Model. 15(4), 759–778 (1999)

    Article  MathSciNet  Google Scholar 

  23. H. Okamura, T. Dohi, mapfit: an R-based tool for PH/MAP parameter estimation, in International Conference on Quantitative Evaluation of Systems (Springer, Berlin, 2015), pp. 105–112

    Google Scholar 

  24. T. Ozawa, Sojourn time distributions in the queue defined by a general QBD process. Queueing Syst. 53(4), 203–211 (2006)

    Article  MathSciNet  Google Scholar 

  25. J. Papp, M. Telek, Canonical representation of discrete phase type distributions of order 2 and 3, in Proceedings of UK Performance Evaluation Workshop, UKPEW, vol. 2013 (2013)

    Google Scholar 

  26. J.F. Pérez, J. Van Velthoven, B. Van Houdt, Q-MAM: a tool for solving infinite queues using matrix-analytic methods, in Proceedings of the 3rd International Conference on Performance Evaluation Methodologies and Tools (2008), p. 16

    Google Scholar 

  27. P. Reinecke, M. Telek, Does a given vector-matrix pair correspond to a PH distribution? Perform. Eval. 81, 40–51 (2014)

    Article  Google Scholar 

  28. A. Riska, E. Smirni, MAMSolver: a matrix analytic methods tool, in TOOLS ’02: Proceedings of the 12th International Conference on Computer Performance Evaluation, Modelling Techniques and Tools (Springer, London, 2002), pp. 205–211

    MATH  Google Scholar 

  29. M. Telek, A. Heindl, Moment bounds for acyclic discrete and continuous phase type distributions of second order, in Proceedings of UK Performance Evaluation Workshop (2002)

    Google Scholar 

  30. M. Telek, G. Horváth, A minimal representation of Markov arrival processes and a moments matching method. Perform. Eval. 64(9), 1153–1168 (2007)

    Article  Google Scholar 

  31. A. Thummler, P. Buchholz, M. Telek, A novel approach for fitting probability distributions to real trace data with the EM algorithm, in 2005 International Conference on Dependable Systems and Networks (DSN’05) (IEEE, New York, 2005), pp. 712–721

    Google Scholar 

  32. A. Van de Liefvoort, The moment problem for continuous distributions. Unpublished technical report, University of Missouri, WP-CM-1990-02 (1990)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the ÚNKP-17-4-III New National Excellence Program of the Ministry of Human Capacities, Hungary, and by the OTKA-123914 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Horváth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Horváth, G., Telek, M. (2019). Markovian Performance Evaluation with BuTools. In: Puliafito, A., Trivedi, K. (eds) Systems Modeling: Methodologies and Tools. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-319-92378-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92378-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92377-2

  • Online ISBN: 978-3-319-92378-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics