Abstract
Spatio/Spector-Temporal Data (SSTD) analyzing is a challenging task, as temporal features may manifest complex interactions that may also change over time. Making use of suitable models that can capture the “hidden” interactions and interrelationship among multivariate data, is vital in SSTD investigation. This chapter describes a number of prominent applications built using the Kasabov’s NeuCube-based Spiking Neural Network (SNN) architecture for mapping, learning, visualization, classification/regression and better understanding and interpretation of SSTD.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kasabov, N.: NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw. 52, 62–76 (2014)
Kasabov, N., Scott, N.M., Tu, E., Marks, S., Sengupta, N., Capecci, E., Othman, M., Doborjeh, M.: Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: design methodology and selected applications. Neural Netw. 78, 1–14 (2016)
Cappeci, E., Gholami Doborjeh, Z., Mammone, N., Foresta, F., Morabito, F., Kasabov, N.: Longitudinal study of Alzheimer’s disease degeneration through EEG data analysis with a NeuCube spiking neural network model. In: Proceedings of IJCNN, Vancouver (2016)
Gholami, Z., Doborjeh, M., Kasabov, N.: Efficient recognition of attentional bias using EEG data and the NeuCube evolving spatio-temporal data machine. In: Proceedings of ICONIP, Kyoto (2016)
Kawano, H., Seo, A., Gholami Doborjeh, Z., Kasabov N., Doborjeh, M.: Analysis of similarity and differences in brain activities between perception and production of facial expressions using EEG data and the NeuCube spiking neural network architecture. In: Proceedings of ICONIP, Kyoto (2016)
Gallese, V., Fadiga, L., Fogassi, L., Rizzolatti, G.: Action recognition in the premotor cortex. Brain 119(2), 593–609 (1996)
Doborjeh, M.G., Wang, G., Kasabov, N., Kydd, R., Russell, B.R.: A spiking neural network methodology and system for learning and comparative analysis of EEG data from healthy versus addiction treated versus addiction not treated subjects. IEEE Trans. Biomed. Eng. 63(9), 1830–1841 (2016)
Kasabov, N., Doborjeh, M., Gholami, Z.: Mapping, learning, visualisation, classification and understanding of fMRI data in the NeuCube evolving spatio temporal data machine of spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. (2016)
Mitchel, T., Wang, W.: StarPlus fMRI data (2016). Accessed 21 Oct 2016
Kasabov, N., Zhou, L., Doborjeh, M.G., Gholami, Z., Yang, J.: New algorithms for encoding, learning and classification of fMRI data in a spiking neural network architecture: a case on modelling and understanding of dynamic cognitive processes. IEEE Trans. Cogn. Dev. Syst. (2016)
Gollahalli, A.: NeuroRehab (2016). https://github.com/akshaybabloo/NeuroRehab. Accessed 29 Nov 2016
Gollahalli, A.: Brain-computer interfaces for virtual Quadcopters based on a spiking-neural network architecture —NeuCube. AUT University, Auckland (2015)
Kasabov, N., Hou, Z., Feigin, V., Chen, Y.: Improved method and system for predicting outcomes based on spatio/spectro-temporal data. Patent PCT patent, WO 2015030606 A2 (2015)
Kasabov, N., Valery, F., Hou, Z.-G., Yixiong, h, Linda, L., Rita, K., Muhaini, O., Priya, P.: Evolving spiking neural networks for personalised modelling, classification and prediction of spatio-temporal patterns with a case study on stroke. Neurocomputing 134, 269–279 (2014)
Doborjeh, M., Kasabov, N.: Ersonalised modelling on integrated clinical and EEG spatio-temporal brain data in the NeuCube spiking neural network system. In Proceedings of IJCNN, Vancouver (2016)
O’grady, G., Wang, T.H.H., Du, P., Angeli, T., Lammers, W.J., Cheng, L.K.: Recent progress in gastric arrhythmia: pathophysiology, clinical significance and future horizons. Clin. Exp. Pharmacol. Physiol. 41(10), 854–862 (2014)
Vivienne, B., Kasabov, N., Peng, D., Stefan, C.: A spiking neural network for personalised modelling of electrogastrography (EGG). In: IAPR Workshop on Artificial Neural Networks in Pattern Recognition (2016)
Du, P., O’grady, G., Paskaranandavadivel, N., Tang, S.J., Abell, T., Cheng, L.K.: Simultaneous anterior and posterior serosal mapping of gastric slow wave dysrhythmias induced by vasopressin. Exp. Physiol. 101(9), 1206–1217 (2016)
Kate, M., Jesse, D., Matt, W.: What is it with the weather and stroke? Expert Rev. Neurother. 10(2), 243–249 (2010)
Tu, E., Kasabov, N., Othman, M.: Improved predictive personalized modelling with the use of spiking neural network system and a case study on stroke occurrences data. In: International Joint Conference on Neural Networks (IJCNN) (2014)
Gill, R.S., Hambridg, H.L., Schneide, E.B., Hanff, T., Tamargo, R.J., Nyquist, P.: Falling temperature and colder weather are associated with an increased risk of aneurysmal subarachnoid hemorrhage. World neurosurgery 79(1), 136–142 (2013)
Cevik, Y., Dougan, N., Dacs, M., Ahmedali, A.: The association between weather conditions and stroke admissions in Turkey. Int. J. Biometeorol. 59(7), 899–905 (2015)
Feigin, V.L., Parmar, P.G., Barker-Collo, S., Bennett, D., Anderson, C., Thrift, A., Stegmayr, B., Rothwell, P.M., Giroud, M., Bejot, Y.: Geomagnetic storms can trigger stroke evidence from 6 large population-based studies in Europe and Australasia. Stroke 45(6), 1639–1645 (2014)
Fonov, V., Evans, A.C., Botteron, K., Almli, R., McKinstry, R., Collins, L.: Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54(1), 313–327 (2011)
Fonov, V.S., Evans, A.C., McKinstry, R., Almli, C., Collins, D.: Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47, S102 (2009)
Ou, W., Cameron, P., Thomas, D.: Natomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Biol 2, 227 (1992)
Baillieux, H., Verslegers, W., Paquier, h, De Deyn, P.P., Marien, P.: Cerebellar cognitive affective syndrome associated with topiramate. Clin. Neurol. Neurosurg. 110(5), 496–499 (2008)
Gao, J.-H., Parsons, L.M., Bower, J.M., Xiong, J.: Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science 272(5261), 545 (1996)
Courchesne, E., Akshoomoff, N., ownsend, J., Saitoh, O.: A model system for the study of attention and the cerebellum: infantile autism. Suppl. Electroencephalogr. Clin. Neurophysiol. 44, 315–325 (1994)
Bose, P., Kasabov, N., Bruzzone, L., Hartono, R.: Spiking neural networks for crop yield estimation based on spatiotemporal analysis of image time series. IEEE Trans. Geosci. Remote Sens. 54(11), 6563–6573 (2016)
Acknowledgements
The research is supported by the Knowledge Engineering and Discovery Research Institute of the Auckland University of Technology (www.kedri.aut.ac.nz), New Zealand.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Gholami Doborjeh, M. et al. (2018). From von Neumann Architecture and Atanasoff’s ABC to Neuromorphic Computation and Kasabov’s NeuCube. Part II: Applications. In: Sgurev, V., Jotsov, V., Kacprzyk, J. (eds) Practical Issues of Intelligent Innovations. Studies in Systems, Decision and Control, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-78437-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-78437-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78436-6
Online ISBN: 978-3-319-78437-3
eBook Packages: EngineeringEngineering (R0)