Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Multiresolution Approach for Content-Based Image Retrieval Using Wavelet Transform of Local Binary Pattern

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10752))

Included in the following conference series:

Abstract

The emergence of low cost digital cameras and other image capturing devices has created a huge amount of different types of images. Accessing images easily requires proper arrangement and indexing of images. This has made image retrieval an important problem of Computer Vision. This paper attempts to decompose a Local Binary Pattern (LBP) image at multiple resolution to extract structural arrangement of pixels more efficiently than processing a single scale of the LBP image. LBP descriptors of the 2-D gray scale image are computed followed by computation of Discrete Wavelet Transform (DWT) coefficients of the resulting 2-D LBP image. Finally, construction of feature vector is done through Gray-Level Co-occurrence Matrix. Performance of the proposed method is tested on two benchmark datasets, Corel-1K and Corel-5K, and measured in terms of Precision and Recall. The experimental results demonstrate that the proposed method outperforms some of the other state-of-the-art methods, which proves the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dutta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: ideas, influences, and trends of the new age. ACM Comput. Surv. 40(2), 5:1–5:60 (2008)

    Google Scholar 

  2. Smith, J.R., Chang, S.F.: Tools and techniques for color image retrieval. Electron. Imaging Sci. Technol. Int. Soc. Opt. Photonics 2670, 426–437 (1996)

    Article  Google Scholar 

  3. Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  4. Srivastava, P., Binh, N.T., Khare, A.: Content-based image retrieval using moments. In: Vinh, P.C., Alagar, V., Vassev, E., Khare, A. (eds.) ICCASA 2013. LNICST, vol. 128, pp. 228–237. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05939-6_23

    Chapter  Google Scholar 

  5. Srivastava, P., Binh, N.T., Khare, A.: Content-based image retrieval using moments of local ternary pattern. Mob. Netw. Appl. 19, 618–625 (2014)

    Article  Google Scholar 

  6. Srivastava, P., Prakash, O., Khare, A.: Content-based image retrieval using moments of wavelet transform. In: International Conference on Control Automation and Information Sciences, Gwangju, South Korea, pp. 159–164 (2014)

    Google Scholar 

  7. Youssef, S.M.: ICTEDCT-CBIR: integrating curvelet transform with enhanced dominant colors extraction and texture analysis for efficient content-based image retrieval. Comput. Electr. Eng. 38, 1358–1376 (2012)

    Article  Google Scholar 

  8. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray scale rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  9. Liu, G., Zhang, L., Hou, Y., Yang, J.: Image retrieval based on multi-texton histogram. Pattern Recogn. 43(7), 2380–2389 (2008)

    Article  MATH  Google Scholar 

  10. Liu, G., Li, Z., Zhang, L., Xu, Y.: Image retrieval based on microstructure descriptor. Pattern Recogn. 44(9), 2123–2133 (2011)

    Article  Google Scholar 

  11. Liu, G.H., Yang, J.Y.: Content-based image retrieval using color difference histogram. Pattern Recogn. 46(1), 188–198 (2013)

    Article  Google Scholar 

  12. Zhang, M., Zhang, K., Feng, Q., Wang, J., Kong, J., Lu, Y.: A novel image retrieval method based on hybrid information descriptors. J. Vis. Commun. Image Represent. 25(7), 1574–1587 (2014)

    Article  Google Scholar 

  13. Feng, L., Wu, J., Liu, S., Zhang, H.: Global correlation descriptor: a novel image representation for image retrieval. J. Vis. Commun. Image Represent. 33, 104–114 (2015)

    Article  Google Scholar 

  14. Xia, Yu., Wan, S., Jin, P., Yue, L.: Multi-scale local spatial binary patterns for content-based image retrieval. In: Yoshida, T., Kou, G., Skowron, A., Cao, J., Hacid, H., Zhong, N. (eds.) AMT 2013. LNCS, vol. 8210, pp. 423–432. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02750-0_45

    Chapter  Google Scholar 

  15. Zhang, D., Islam, M.M., Lu, G., Sumana, I.J.: Rotation invariant curvelet features for region based image retrieval. Int. J. Comput. Vis. 98(2), 187–201 (2012)

    Article  MathSciNet  Google Scholar 

  16. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall Press, Englewood Cliffs (2002)

    Google Scholar 

  17. Haralick, R.M., Shanmungam, K., Dinstein, I.: Textural features of image classification. IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973)

    Article  Google Scholar 

  18. http://wang.ist.psu.edu/docs/related/. Accessed Oct 2017

  19. http://www.ci.gxnu.edu.cn/cbir/. Accessed Oct 2017

Download references

Acknowledgements

This work was supported by the Brain Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2016M3C7A1905477), and the Basic Science Research Program through the NRF funded by the Ministry of Education (NRF-2017R1D1A1B03036423).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khare, M., Srivastava, P., Gwak, J., Khare, A. (2018). A Multiresolution Approach for Content-Based Image Retrieval Using Wavelet Transform of Local Binary Pattern. In: Nguyen, N., Hoang, D., Hong, TP., Pham, H., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2018. Lecture Notes in Computer Science(), vol 10752. Springer, Cham. https://doi.org/10.1007/978-3-319-75420-8_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75420-8_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75419-2

  • Online ISBN: 978-3-319-75420-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics