Abstract
Community detection consists of grouping related vertices that usually show high intra-cluster connectivity and low inter-cluster connectivity. This is an important feature that many networks exhibit and detecting such communities can be challenging, especially when they are densely connected. The method we propose is a degenerate agglomerative hierarchical clustering algorithm (DAHCA) that aims at finding a community structure in networks. We tested this method using common classes of graph benchmarks and compared it to some state-of-the-art community detection algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, vol. 8. Cambridge University Press, Cambridge (1994)
Albert, R., Jeong, H., Barabási, A.L.: Internet: diameter of the world-wide web. Nature 401(6749), 130–131 (1999)
Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.L.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)
Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)
Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)
Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)
Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)
Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007)
Pons, P., Latapy, M.: Computing communities in large networks using random walks. In: Yolum, I., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 284–293. Springer, Heidelberg (2005). https://doi.org/10.1007/11569596_31
Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)
Newman, M.E.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)
Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. J. Stat. Mech.: Theory Exp. 2005(09), P09008 (2005)
Yang, Z., Algesheimer, R., Tessone, C.J.: A comparative analysis of community detection algorithms on artificial networks. Sci. Rep. 6, 30750 (2016)
scikit learn: User guide - clustering (2017). http://scikit-learn.org/stable/modules/clustering.html. Accessed 25 Sept 2017
Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)
Bagnoli, F., Massaro, E., Guazzini, A.: Community-detection cellular automata with local and long-range connectivity. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 204–213. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33350-7_21
Lancichinetti, A., Fortunato, S.: Erratum: community detection algorithms: a comparative analysis. [Phys. Rev. E 80, 056117 (2009)]. Phys. Rev. E 89(4), 049902 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Fiscarelli, A.M., Beliakov, A., Konchenko, S., Bouvry, P. (2018). A Degenerate Agglomerative Hierarchical Clustering Algorithm for Community Detection. In: Nguyen, N., Hoang, D., Hong, TP., Pham, H., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2018. Lecture Notes in Computer Science(), vol 10751. Springer, Cham. https://doi.org/10.1007/978-3-319-75417-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-75417-8_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-75416-1
Online ISBN: 978-3-319-75417-8
eBook Packages: Computer ScienceComputer Science (R0)