Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Degenerate Agglomerative Hierarchical Clustering Algorithm for Community Detection

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2018)

Abstract

Community detection consists of grouping related vertices that usually show high intra-cluster connectivity and low inter-cluster connectivity. This is an important feature that many networks exhibit and detecting such communities can be challenging, especially when they are densely connected. The method we propose is a degenerate agglomerative hierarchical clustering algorithm (DAHCA) that aims at finding a community structure in networks. We tested this method using common classes of graph benchmarks and compared it to some state-of-the-art community detection algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, vol. 8. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  2. Albert, R., Jeong, H., Barabási, A.L.: Internet: diameter of the world-wide web. Nature 401(6749), 130–131 (1999)

    Article  Google Scholar 

  3. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.L.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)

    Article  Google Scholar 

  4. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)

    Article  Google Scholar 

  6. Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  7. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)

    Article  Google Scholar 

  8. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007)

    Article  Google Scholar 

  9. Pons, P., Latapy, M.: Computing communities in large networks using random walks. In: Yolum, I., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 284–293. Springer, Heidelberg (2005). https://doi.org/10.1007/11569596_31

    Chapter  Google Scholar 

  10. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)

    Article  Google Scholar 

  11. Newman, M.E.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)

    Article  MathSciNet  Google Scholar 

  12. Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. J. Stat. Mech.: Theory Exp. 2005(09), P09008 (2005)

    Article  Google Scholar 

  13. Yang, Z., Algesheimer, R., Tessone, C.J.: A comparative analysis of community detection algorithms on artificial networks. Sci. Rep. 6, 30750 (2016)

    Article  Google Scholar 

  14. scikit learn: User guide - clustering (2017). http://scikit-learn.org/stable/modules/clustering.html. Accessed 25 Sept 2017

  15. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)

    Article  MATH  Google Scholar 

  16. Bagnoli, F., Massaro, E., Guazzini, A.: Community-detection cellular automata with local and long-range connectivity. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 204–213. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33350-7_21

    Chapter  Google Scholar 

  17. Lancichinetti, A., Fortunato, S.: Erratum: community detection algorithms: a comparative analysis. [Phys. Rev. E 80, 056117 (2009)]. Phys. Rev. E 89(4), 049902 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Maria Fiscarelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fiscarelli, A.M., Beliakov, A., Konchenko, S., Bouvry, P. (2018). A Degenerate Agglomerative Hierarchical Clustering Algorithm for Community Detection. In: Nguyen, N., Hoang, D., Hong, TP., Pham, H., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2018. Lecture Notes in Computer Science(), vol 10751. Springer, Cham. https://doi.org/10.1007/978-3-319-75417-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75417-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75416-1

  • Online ISBN: 978-3-319-75417-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics