Nothing Special   »   [go: up one dir, main page]

Skip to main content

Application of Computational Intelligence Techniques for Forecasting Problematic Wine Fermentations Using Data from Classical Chemical Measurements

  • Chapter
  • First Online:
Innovations in Technologies for Fermented Food and Beverage Industries

Abstract

The early forecasting of normal and problematic wine fermentations is one of the main problems of winemaking processes, due to its significant impacts in wine quality and utility. In Chile this is a critical problem because it is one of the top ten wine-producing countries. In this chapter, we review the computational intelligence methods that have been applied to solve this problem. Both methods studied, support vector machines and artificial neural networks, show excellent results with respect to the overall prediction error for different training/testing/validation percentages, different time cutoffs, and several parameter configurations. These results are of great importance for wine production because they are based only on measurement of classical chemical variables and they confirm that computational intelligence methods are a useful tool to the winemakers in order to correct in time a potential problem in the fermentation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe S (2010) Support vector machines for pattern classification. 2nd edn. Springer Academic Press, Elsevier, Oxford, United Kingdom

    Book  Google Scholar 

  • Beltran N et al (2006) Feature extraction and classification of Chilean wines. J Food Eng 75:1–10

    Article  CAS  Google Scholar 

  • Beltran G, Novo M, Guillamón J, Mas A, Rozés N (2008) Effect of fermentation temperature and culture media on the yeast lipid composition and wine volatile compounds. Int J Food Microbiol 121:169–177

    Article  CAS  Google Scholar 

  • Bishop CM (1996) Neural networks for pattern recognition. Oxford University Press, Oxford

    Google Scholar 

  • Bishop CM (2006) Pattern recognition and machine learning. Springer, New York

    Google Scholar 

  • Bisson L, Butzke C (2000) Diagnosis and rectification of stuck and sluggish fermentations. Am J Enol Vitic 51(2):168–177

    CAS  Google Scholar 

  • Blateyron L, Sablayrolles JM (2001) Stuck and slow fermentations in enology: statical study of causes and effectiveness of combined additions of oxygen and diammonium phosphate. J Biosci Bioeng 91(2):184–189

    Article  CAS  Google Scholar 

  • Capparuccia R, De Leone R, Marchitto E (2007) Integrating support vector machines and neural networks. Neural Netw 20:590–597

    Article  Google Scholar 

  • D’Amatto D, Corbo M, Del Nobile M, Sinigaglia M (2006) Effects of temperature, ammonium and glucose concentrations on yeast growth in a model wine system. Int J Food Sci Technol 41:1152–1157

    Article  Google Scholar 

  • Demyanov S, Bailey J, Ramamohanarao K, Leckie C (2012) AIC and BIC based approaches for SVM parameter value estimation with RBK kernels. JMLR W&CP 25:97–112

    Google Scholar 

  • Engelbrecht AP (2007) Computational intelligence: an introduction. 2nd ed. John Wiley & Sons, West Sussex, England

    Google Scholar 

  • Executive Report Chilean Wine Production (2011–2016) Servicio Agrícola y Ganadero de Chile

    Google Scholar 

  • Fernandes AM et al (2015) Brix, pH and anthocyanin content determination in whole port wine grape berries by hyperspectral imaging and neural networks. Comput Electron Agric 115:88–96

    Article  Google Scholar 

  • Gaspar P, Carbonell J, Oliveira JL (2012) On the parameters optimization of support vector machines for binary classification. J Integr Bioinform 9(3):201

    PubMed  Google Scholar 

  • Gómez-Meire S et al (2014) Assuring the authenticity of northwest Spain white wine varieties using machine learning techniques. Food Res Int 60:230–240

    Article  Google Scholar 

  • Hernández G, Leon R, Urtubia A (2016) Detection of abnormal wine fermentation processes by support vector machines. Cluster Computing. 19(3):1219

    Article  Google Scholar 

  • Hernández G, Leon R, Urtubia A (2017) Application of neural networks for the early prediction of problematic wine fermentations using data from the classical chemical measurements, submitted to Journal of Biotechnology, (in press)

    Google Scholar 

  • Hosu A, MirceaCristea VM, Cimpoiu C (2014) Analysis of total phenolic, flavonoids, anthocyanins and tannins content in Romanian red wines: prediction of antioxidant activities and classification of wines using artificial neural networks. Food Chem 150:113–118

    Article  CAS  Google Scholar 

  • Jurado M et al (2012) Classification of Spanish DO white wines according to their elemental profile by means of support vector machines. Food Chem 135(3):898–903

    Article  CAS  Google Scholar 

  • Kruse R, et al (2013) Computational intelligence: a methodological introduction. Springer-Verlag, London, England

    Google Scholar 

  • Kruzlicova D et al (2009) Classification of Slovak white wines using artificial neural networks and discriminant techniques. Food Chem 112:1046–1052

    Article  CAS  Google Scholar 

  • Liao O et al (2015) Parameter optimization for support vector machine based on nested genetic algorithms. J Autom Control Eng 3(6):507–511

    Article  Google Scholar 

  • Marini F, Bucci R, Magri A (2008) Artificial neural networks in chemometrics: history, examples and perspectives. Microchem J 88:178–185

    Article  CAS  Google Scholar 

  • Nagata Y, Chu K (2003) Optimization of a fermentation medium using neural networks and genetic algorithms. Biotechnol Lett 25:1837–1842

    Article  CAS  Google Scholar 

  • Penza M, Cassano G (2004) Chemometric characterization of Italian wines by thin-film multisensors array and artificial neural networks. Food Chem 86:283–296

    Article  CAS  Google Scholar 

  • Perez-Magariño S et al (2004) Comparative study of artificial neural network and multivariate methods to classify Spanish DO rose wines. Talanta 62:983–990

    Article  Google Scholar 

  • Pszczólkowski P, Carriles P, Cumsille M, Maklouf M (2001) Reflexiones sobre la madurez de cosecha y las condiciones de vinificación, con relación a la Problemática de fermentaciones alcohólicas lentas y/o paralizante en Chile, Facultad de Agronomía, Pontificia Universidad Católica de Chile

    Google Scholar 

  • Ripley BD (2008) Pattern recognition and neural networks. Cambridge University Press, Cambridge, USA

    Google Scholar 

  • Rocha M, Cortez P, Neves J (2007) Evolution of neural networks for classification and regression. Neurocomputing 70:2809–2816

    Article  Google Scholar 

  • Sánchez D (2003) Advanced support vector machines and kernel methods. Neurocomputing

    Google Scholar 

  • Scholkopf B, Smola AJ (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. The MIT Press, Cambridge, USA

    Google Scholar 

  • Theodoridis S, Koutroumbas K (2008) Pattern recognition, fourth edition. Academic Press, Elsevier, San Diego, USA

    Chapter  Google Scholar 

  • Urtubia A, Roger JM (2011) Predictive power of LDA to discriminate abnormal wine fermentations. J Chemom 25(7):382–388

    Article  CAS  Google Scholar 

  • Urtubia A, Emparan M, Almonacid S, Pinto M, Valdenegro M (2010a) Application of MPCA and MPLS on industrial batch bioprocesses. J Biotechnol 150(1):310

    Article  Google Scholar 

  • Urtubia A, Emparan M, Roman C, Hernández G, Roger JM (2010b) Multivariate statistic and pattern recognition to detect abnormal fermentations in wine process. J Biotechnol 150(1):328

    Article  Google Scholar 

  • Urtubia A, Hernández G, Román C (2011) Prediction of problematic wine fermentations using artificial neural networks. Bioprocess Biosyst Eng 34:1057–1065

    Article  Google Scholar 

  • Urtubia A, Hernández G, Roger JM (2012) Detection of abnormal fermentations in wine process by multivariate statistics and pattern recognition techniques. J Biotechnol 159:336–341

    Article  CAS  Google Scholar 

  • Varela C, Pizarro F, Agosin E (2004) Biomass content govern fermentation rate in nitrogen-deficient wine musts. Appl Environ Microbiol 70(6):3392–3400

    Article  CAS  Google Scholar 

  • Wu Z et al (2015) Monitoring of fermentation process parameters of Chinese rice wine using attenuated total reflectance mid-infrared spectroscopy. Food Control 50:405–412

    Article  CAS  Google Scholar 

  • www.techniquesinhomewinemaking.com

  • Yang Y, He Q, Hu X (2012) A compact neural network for training, support vector machines. Neurocomputing 86:193–198

    Article  Google Scholar 

  • Yu HY, Niu XY, Lin HJ, Ying YB, Li BB, Pan XX (2009) A feasibility study on on-line determination of rice wine composition by Vis-NIR spectroscopy and least-squares support vector machines. Food Chem 113(1):291–296

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Research supported by grants: FONDECYT 1120679 and Conicyt PIA/Basal FB0821.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hernández, G., León, R., Urtubia, A. (2018). Application of Computational Intelligence Techniques for Forecasting Problematic Wine Fermentations Using Data from Classical Chemical Measurements. In: Panda, S., Shetty, P. (eds) Innovations in Technologies for Fermented Food and Beverage Industries. Food Microbiology and Food Safety. Springer, Cham. https://doi.org/10.1007/978-3-319-74820-7_16

Download citation

Publish with us

Policies and ethics