Abstract
Mobile devices play an essential role in telecommunication era. The need for securing this type of communications is inevitable. The majority of security and cryptographic protocols require unpredictable random numbers. However, mobile computing devices have difficulty in generating random numbers due to constraints in terms of power and computing resources. We propose a novel pseudorandom number generator protocol to enable secure communication between mobile devices and a trusted centralized server. The trusted centralized server generates qualified random numbers based on the location of mobile device specified by geographical latitude and longitude. We evaluate the quality of generated random bit sequences through the National Institute of Standards and Technology (NIST) tests, and compare them with other methods in regard to security and quality of generated random numbers. The quality of the randomness of generated numbers is comparable to that from the existing methods and more superior than them found in use in mobile devices today.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, R., Agarwal, G.: An efficient method of generating random numbers from congruence equations for cryptographic applications. Int. J. Sci. Eng. Comput. Technol. 6(7), 290 (2016)
Bazai, S.U., Jang-Jaccard, J., Zhang, X.: A privacy preserving platform for MapReduce. In: Batten, L., Kim, D.S., Zhang, X., Li, G. (eds.) ATIS 2017. CCIS, vol. 719, pp. 88–99. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5421-1_8
Bhaskar, P., Gawande, P.: A survey on implementation of random number generator in FPGA. Int. J. Sci. Res. (IJSR) 1590–1592 (2013)
Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudorandom bits. SIAM J. Comput. 13(4), 850–864 (1984)
Callegari, S., Rovatti, R., Setti, G.: Embeddable ADC-based true random number generator for cryptographic applications exploiting nonlinear signal processing and chaos. IEEE Trans. Signal Process. 53(2), 793–805 (2005)
Chefranov, A., Abhari, S.M.A., Alavizadeh, H., Zanjani, M.F.: Secure true random number generator in WLAN/LAN. In: Proceedings of the 6th International Conference on Security of Information and Networks, pp. 331–335. ACM (2013)
Francillon, A., Castelluccia, C.: Tinyrng: A cryptographic random number generator for wireless sensors network nodes. In: 2007 5th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks and Workshops, WiOpt 2007, pp. 1–7. IEEE (2007)
Kozierski, P., Lis, M., Królikowski, A.: Parallel uniform random number generator in FPGA. Comput. Appl. Electr. Eng. 12 (2014)
LEcuyer, P., Munger, D., Oreshkin, B., Simard, R.: Random numbers for parallel computers: requirements and methods, with emphasis on GPUs. Math. Comput. Simul. 135, 3–17 (2017)
Lee, J.-H., Jeon, M.-J., Kim, S.C.: Uniform random number generator using leap-ahead LFSR architecture. In: Kim, T., Ramos, C., Kim, H., Kiumi, A., Mohammed, S., Ślęzak, D. (eds.) ASEA 2012. CCIS, vol. 340, pp. 264–271. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35267-6_34
Lo Re, G., Milazzo, F., Ortolani, M.: Secure random number generation in wireless sensor networks. Concurrency Comput. Pract. Experience 27(15), 3842–3862 (2015)
Noll, L.C., Mende, R.G., Sisodiya, S.: Method for seeding a pseudo-random number generator with a cryptographic hash of a digitization of a chaotic system. US Patent 5,732,138, 24 March 1998
Pareschi, F., Setti, G., Rovatti, R.: Implementation and testing of high-speed cmos true random number generators based on chaotic systems. IEEE Trans. Circuits Syst. I Regul. Pap. 57(12), 3124–3137 (2010)
Rukhin, A., Soto, J., Nechvatal, J., Barker, E., Leigh, S., Levenson, M., Banks, D., Heckert, A., Dray, J., Vo, S., et al.: Statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST Special Publication (2010)
Sathyamorthy, D., Shafii, S., Amin, Z.F.M., Jusoh, A., Ali, S.Z.: Evaluation of the trade-off between global positioning system (GPS) accuracy and power saving from reduction of number of GPS receiver channels. Appl. Geomatics 8(2), 67–75 (2016)
Shujun, L., Xuanqin, M., Yuanlong, C.: Pseudo-random bit generator based on couple chaotic systems and its applications in stream-cipher cryptography. In: Rangan, C.P., Ding, C. (eds.) INDOCRYPT 2001. LNCS, vol. 2247, pp. 316–329. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45311-3_30
Stefanov, A., Gisin, N., Guinnard, O., Guinnard, L., Zbinden, H.: Optical quantum random number generator. J. Mod. Opt. 47(4), 595–598 (2000)
Suo, H., Wan, J., Zou, C., Liu, J.: Security in the internet of things: a review. In: 2012 International Conference on Computer Science and Electronics Engineering (ICCSEE), vol. 3, pp. 648–651. IEEE (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Alavizadeh, H., Alavizadeh, H., Dube, K., Kim, D.S., Jang-Jaccard, J., Guesgen, H.W. (2017). A Secure Server-Based Pseudorandom Number Generator Protocol for Mobile Devices. In: Liu, J., Samarati, P. (eds) Information Security Practice and Experience. ISPEC 2017. Lecture Notes in Computer Science(), vol 10701. Springer, Cham. https://doi.org/10.1007/978-3-319-72359-4_54
Download citation
DOI: https://doi.org/10.1007/978-3-319-72359-4_54
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-72358-7
Online ISBN: 978-3-319-72359-4
eBook Packages: Computer ScienceComputer Science (R0)