Abstract
Interpolation is becoming a standard technique for over-approximating state spaces in software model checking with Satisfiability Modulo Theories (SMT). In particular when modelling programs with linear arithmetics, the standard state-of-the-art technique might provide either interpolants that are too specific or too generic to be useful for a given application. In this work we introduce the SI-LRA interpolation system for linear real arithmetics that allows the tuning of interpolants based on shifting between the primal and dual interpolants. We prove a strength relation between the interpolants constructed by SI-LRA, and integrate SI-LRA into a propositional interpolator in an SMT solver. Our evaluation, performed using a state-of-the-art software model checker, reveals that correct tuning with SI-LRA can reduce the number of needed refinements by up to one third and provide lower runtimes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 313–329. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_22
Alt, L., Asadi, S., Chockler, H., Even Mendoza, K., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: HiFrog: SMT-based function summarization for software verification. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 207–213. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_12
Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: A proof-sensitive approach for small propositional interpolants. In: Gurfinkel, A., Seshia, S.A. (eds.) VSTTE 2015. LNCS, vol. 9593, pp. 1–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29613-5_1
Alt, L., Hyvärinen, A.E.J., Asadi, S., Sharygina, N.: Duality-based interpolation for quantifier-free equalities and uninterpreted functions. In: Proc. FMCAD (2017) (to appear)
Bogomolov, S., Frehse, G., Giacobbe, M., Henzinger, T.A.: Counterexample-guided refinement of template polyhedra. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 589–606. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_34
Craig, W.: Three uses of the herbrand-gentzen theorem in relating model theory and proof theory. The Journal of Symbolic Logic 22(3), 269–285 (1957)
D’Silva, V.: Propositional interpolation and abstract interpretation. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 185–204. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11957-6_11
D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 129–145. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11319-2_12
Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963_11
Gao, S., Zufferey, D.: Interpolants in nonlinear theories over the reals. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 625–641. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_41
Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The seahorn verification framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 343–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_20
Huang, G.: Constructing craig interpolation formulas. In: Du, D.-Z., Li, M. (eds.) COCOON 1995. LNCS, vol. 959, pp. 181–190. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0030832
Hyvärinen, A.E.J., Asadi, S., Even-Mendoza, K., Fedyukovich, G., Chockler, H., Sharygina, N.: Theory refinement for program verification. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 347–363. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_22
Hyvärinen, A.E.J., Marescotti, M., Alt, L., Sharygina, N.: OpenSMT2: an SMT solver for multi-core and cloud computing. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 547–553. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_35
Krajícek, J.: Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. Journal of Symbolic Logic 62(2), 457–486 (1997)
Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View, 2nd edn. Texts in Theoretical Computer Science. An EATCS Series. Springer (2016)
McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1), 101–121 (2005)
McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6_1
Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. Journal of Symbolic Logic 62(3), 981–998 (1997)
Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: PeRIPLO: a framework for producing effective interpolants in SAT-based software verification. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 683–693. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_45
Rollini, S.F., Sery, O., Sharygina, N.: Leveraging interpolant strength in model checking. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 193–209. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_18
Rümmer, P., Subotic, P.: Exploring interpolants. In: Proc. FMCAD 2013, pp. 69–76. IEEE (2013)
Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69738-1_25
Schlaipfer, M., Weissenbacher, G.: Labelled interpolation systems for hyper-resolution, clausal, and local proofs. Journal of Automated Reasoning 57(1), 3–36 (2016)
Scholl, C., Pigorsch, F., Disch, S., Althaus, E.: Simple interpolants for linear arithmetic. In: Proc. DATE 2014, pp. 1–6. European Design and Automation Association (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Alt, L., Hyvärinen, A.E.J., Sharygina, N. (2017). LRA Interpolants from No Man’s Land. In: Strichman, O., Tzoref-Brill, R. (eds) Hardware and Software: Verification and Testing. HVC 2017. Lecture Notes in Computer Science(), vol 10629. Springer, Cham. https://doi.org/10.1007/978-3-319-70389-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-70389-3_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70388-6
Online ISBN: 978-3-319-70389-3
eBook Packages: Computer ScienceComputer Science (R0)