Nothing Special   »   [go: up one dir, main page]

Skip to main content

MuSynth: Program Synthesis via Code Reuse and Code Manipulation

  • Conference paper
  • First Online:
Search Based Software Engineering (SSBSE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10452))

Included in the following conference series:

  • 864 Accesses

Abstract

MuSynth takes a draft C program with “holes”, a test suite, and optional simple hints—that together specify a desired functionality—and performs program synthesis to auto-complete the holes. First, MuSynth leverages a similar-code-search engine to find potential “donor” code (similar to the required functionality) from a corpus. Second, MuSynth applies various synthesis mutations in an evolutionary loop to find and modify the donor code snippets to fit the input context and produce the expected functionality. This paper focuses on the latter, and our preliminary evaluation shows that MuSynth’s combination of type-based heuristics, simple hints, and evolutionary search are each useful for efficient program synthesis.

This research was supported by DARPA MUSE award #FA8750-14-2-0270. The views, opinions, and/or findings contained in this article are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Program Synthesis Challenge Benchmark. https://github.com/ssbse-2017-submission/synthesis-challenges

  2. The Clang Project. https://clang.llvm.org/

  3. Alur, R., Bodik, R., Juniwal, G., Martin, M.M., Raghothaman, M., Seshia, S.A., Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In: FMCAD. IEEE (2013)

    Google Scholar 

  4. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: DeepCoder: Learning to Write Programs. ArXiv e-prints., November 2016

    Google Scholar 

  5. Barr, E.T., Brun, Y., Devanbu, P., Harman, M., Sarro, F.: The plastic surgery hypothesis. In: FSE. ACM (2014)

    Google Scholar 

  6. Błądek, I., Krawiec, K.: Evolutionary program sketching. In: McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., García-Sánchez, P. (eds.) EuroGP 2017. LNCS, vol. 10196, pp. 3–18. Springer, Cham (2017). doi:10.1007/978-3-319-55696-3_1

    Chapter  Google Scholar 

  7. Gulwani, S.: Dimensions in program synthesis. In: PPDP. ACM (2010)

    Google Scholar 

  8. Kashyap, V., Brown, D.B., Liblit, B., Melski, D., Reps, T.: Source Forager: A Search Engine for Similar Source Code. ArXiv e-prints (2017)

    Google Scholar 

  9. Katz, G., Peled, D.A.: Synthesis of parametric programs using genetic programming and model checking. In: INFINITY (2013)

    Google Scholar 

  10. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a generic method for automatic software repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2012)

    Article  Google Scholar 

  11. Lu, Y., Chaudhuri, S., Jermaine, C., Melski, D.: Data-Driven Program Completion. ArXiv e-prints, May 2017

    Google Scholar 

  12. Murali, V., Chaudhuri, S., Jermaine, C.: Bayesian Sketch Learning for Program Synthesis. ArXiv e-prints (2017)

    Google Scholar 

  13. Raychev, V., Vechev, M., Krause, A.: Predicting program properties from “Big Code”. In: POPL. ACM (2015)

    Google Scholar 

  14. Schulte, E.: Neutral networks of real-world programs and their application to automated software evolution. Ph.D. thesis, University of New Mexico, Albuquerque, USA, July 2014. https://cs.unm.edu/~eschulte/dissertation

  15. Spector, L.: Assessment of problem modality by differential performance of lexicase selection in genetic programming: a preliminary report. In: GECCO. ACM (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineeth Kashyap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kashyap, V., Swords, R., Schulte, E., Melski, D. (2017). MuSynth: Program Synthesis via Code Reuse and Code Manipulation. In: Menzies, T., Petke, J. (eds) Search Based Software Engineering. SSBSE 2017. Lecture Notes in Computer Science(), vol 10452. Springer, Cham. https://doi.org/10.1007/978-3-319-66299-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66299-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66298-5

  • Online ISBN: 978-3-319-66299-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics