Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dexterous Hand Motion Classification and Recognition Based on Multimodal Sensing

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10462))

Included in the following conference series:

Abstract

Human hand motions analysis is an essential research topic in recent applications, especially for dexterous robot hand manipulation learning from human hand skills. It provides important information about gestures, moving, speed and the control force captured via multimodal sensing technologies. This paper presents a comprehensive discussion of the nature of human hand motions in terms of simple motions, such as grasps and gestures, and complex motions, e.g. in-hand manipulations and re-grasps. And then, a novel multimodal sensing based hand motion capture system is proposed to acquire the sensory information. By using an adaptive directed acyclic graph algorithm, the experimental results show the proposed system has a higher recognition rate compared with those with individual sensing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Saudabayev, A., Varol, H.A.: Sensors for robotic hands: a survey of state of the art. IEEE. Access 3(9), 1765–1782 (2015)

    Article  Google Scholar 

  2. Liu, H., Nguyen, K.C., Perdereau, V., et al.: Finger contact sensing and the application in dexterous hand manipulation. Auton. Robots 39(1), 25–41 (2015)

    Article  Google Scholar 

  3. Khan, R.Z., Ibraheem, N.A.: Survey on gesture recognition for hand image postures. Comput. Inf. Sci. 5(3), 110–121 (2012)

    Google Scholar 

  4. Liu, H., Ju, Z., Ji, X., Chan, S., Khoury, M.: Human Motion Sensing and Recognition: A Fuzzy Qualitative Approach. Springer, Heidelberg (2017)

    Book  Google Scholar 

  5. Wheatland, N., Wang, Y., Song, H., et al.: State of the art in hand and finger modeling and animation. Comput. Graph. Forum 34(2), 735–760 (2015)

    Article  Google Scholar 

  6. Ju, Z., Liu, H.: Human hand motion analysis with multisensory information. IEEE/ASME Trans. Mechatron. 675(5), 456–466 (2014)

    Article  Google Scholar 

  7. Marin, G., Dominio, F., Zanuttigh, P.: Hand gesture recognition with leap motion and kinect devices. In: 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, pp. 1565–1569. IEEE (2014)

    Google Scholar 

  8. Ju, Z., Liu, H.: Human hand motion recognition using empirical copula. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, pp. 4625–4630. IEEE (2010)

    Google Scholar 

  9. Elliott, J.M., Connolly, K.J.: A classification of manipulative hand movements. Dev. Med. Child Neurol. 3(6), 283–296 (1984)

    Google Scholar 

  10. Exner, C.E.: The zone of proximal development in in-hand manipulation skills of nondysfunctional 3-and 4-year-old children. Am. J. Occup. Ther. 44(10), 884–891 (1990)

    Article  Google Scholar 

  11. Pont, K., Wallen, M., Bundy, A.: Conceptualising a modified system for classification of inhand manipulation. Aust. Occup. Ther. J. 56(2), 2–15 (2009)

    Article  Google Scholar 

  12. Fougner, A., Scheme, E., Chan, A.D.C., et al.: A multi-modal approach for hand motion classification using surface EMG and accelerometers. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, Boston, USA, pp. 4247–4250. IEEE (2011)

    Google Scholar 

  13. Bullock, I.M., Dollar, A.M.: Classifying human manipulation behavior. In: IEEE International Conference on Rehabilitation Robotics (ICORR), Zurich, Switzerland, pp. 1–6. IEEE (2011)

    Google Scholar 

  14. Mitra, S., Acharya, T.: Gesture recognition: a survey. IEEE Trans. Syst. Man Cybern. Part C (Appli. Rev.) 33(4), 311–324 (2007)

    Article  Google Scholar 

  15. Bullock, I.M., Ma, R.R., Dollar, A.M.: A hand-centric classification of human and robot dexterous manipulation. IEEE Trans. Haptics 6(9), 129–144 (2013)

    Article  Google Scholar 

  16. Jiang, M.W., Wang, R.C., Wang, J.Z., et al.: A method of recognizing finger motion using wavelet transform of surface EMG signal. In: 27th Annual International Conference on Engineering in Medicine and Biology, Shanghai, China, pp. 2672–2674. IEEE (2006)

    Google Scholar 

  17. Ju, Z., Ouyang, G., Wilamowska-Korsak, M., et al.: Surface EMG based hand manipulation identification via nonlinear feature extraction and classification. IEEE Sens. J. 13(4), 3302–3311 (2013)

    Article  Google Scholar 

  18. Lu, Y., Lu, G., Bu, X., Yu, Y.: Classification of hand manipulation using bp neural network and support vector machine based on surface electromyography signal. IFAC-PapersOnLine 45(12), 869–873 (2015)

    Article  Google Scholar 

  19. Kappassov, Z., Corrales, J.A., Perdereau, V.: Tactile sensing in dexterous robot hands - Review. Robot. Autonom. Syst. 74(7), 195–220 (2015)

    Article  Google Scholar 

  20. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(6), 121–167 (1998)

    Article  Google Scholar 

  21. Abe, S.: Support Vector Machines for Pattern Classification. Springer, London (2005)

    MATH  Google Scholar 

  22. Ben-Hur, A., Weston, J.: A users guide to support vector machines. Data Min. Tech. Life Sci. 609(10), 223–239 (2010)

    Google Scholar 

  23. Kijsirikul, B., Ussivakul, N.: Multiclass support vector machines using adaptive directed acyclic graph. In: Proceedings of the 2002 International Joint Conference on Neural Networks, IJCNN 2002, Honolulu, HI, USA, pp. 980–985. IEEE (2002)

    Google Scholar 

  24. Platt, J.C., Cristianini, N., Shawe-Taylor, J.: Large margin DAGs for multiclass classification. In: Advances in Neural Information Processing Systems, pp. 547–553 (1999)

    Google Scholar 

  25. Ju, Z., Ji, X., Li, J., Liu, H.: An integrative framework of human hand gesture segmentation for human robot interaction. IEEE Syst. J. 99(9), 1–11 (2015)

    Google Scholar 

  26. Ju, Z., Gao, D., Cao, J., Liu, H.: A novel approach to extract hand gesture feature in depth images. Multimedia Tools Appl. 75(19), 11929–11943 (2017). Springer, Heidelberg

    Article  Google Scholar 

Download references

Acknowledgment

This work is partially supported by Natural Science Foundation of China (Grant No. 51575412), the Fundamental Research Funds for the Central Universities (Grant No. 2016-JL-011). Also, the authors would like to acknowledge the reviewers for their valuable comments and suggestions that helped to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaojie Ju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xue, Y., Ju, Z., Xiang, K., Yang, C., Liu, H. (2017). Dexterous Hand Motion Classification and Recognition Based on Multimodal Sensing. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10462. Springer, Cham. https://doi.org/10.1007/978-3-319-65289-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65289-4_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65288-7

  • Online ISBN: 978-3-319-65289-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics