Nothing Special   »   [go: up one dir, main page]

Skip to main content

Parallelizing Metaheuristics for Optimal Design of Multiproduct Batch Plants on GPU

  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10421))

Included in the following conference series:

Abstract

We propose a metaheuristics-based approach to the optimal design of multi-product batch plants, with a particular application example of chemical-engineering systems. Our hybrid approach combines two metaheuristics: Ant Colony Optimization (ACO) and Simulated Annealing (SA). We develop a sequential implementation of the proposed method and we parallelize it on Graphics Processing Units (GPU) using the CUDA programming environment. We experimentally demonstrate that the results of our hybrid metaheuristic approach (ACO+SA) are very near to the global optimal solutions, but they are produced much faster than using the deterministic Branch-and-Bound approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aarts, E., Korst, J., Michiels, W.: Simulated annealing. In: Search Methodologies, pp. 265–285. Springer Science & Business Media, Heidelberg (2014)

    Google Scholar 

  2. Agarwal, K., Sinha, A., Hima Bindu, M.: A novel hybrid approach to N-Queen problem. In: Wyld, D., Zizka, J., Nagamalai, D. (eds.) Advances in Computer Science, Engineering & Applications. AISC, vol. 166, pp. 519–527. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30157-5_52

    Chapter  Google Scholar 

  3. Aguilar-Lasserre, A.A., Bautista, M.A.B., Ponsich, A., Huerta, M.A.G.: An AHP-based decision-making tool for the solution of multiproduct batch plant design problem under imprecise demand. Comput. Oper. Res. 36(3), 711–736 (2009)

    Article  MATH  Google Scholar 

  4. Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  5. Borisenko, A.B., Karpushkin, S.V.: Hierarchy of processing equipment configuration design problems for multiproduct chemical plants. J. Comput. Syst. Sci. Int. 53(3), 410–419 (2014)

    Article  MATH  Google Scholar 

  6. Borisenko, A., Haidl, M., Gorlatch, S.: A GPU parallelization of branch-and-bound for multiproduct batch plants optimization. J. Supercomput. 73(2), 639–651 (2017)

    Article  Google Scholar 

  7. Borisenko, A., Kegel, P., Gorlatch, S.: Optimal design of multi-product batch plants using a parallel branch-and-bound method. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 417–430. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23178-0_36

    Chapter  Google Scholar 

  8. Dawson, L., Stewart, I.: Improving ant colony optimization performance on the GPU using CUDA. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1901–1908. IEEE, June 2013

    Google Scholar 

  9. Delévacq, A., Delisle, P., Gravel, M., Krajecki, M.: Parallel ant colony optimization on graphics processing units. J. Parallel Distrib. Comput. 73(1), 52–61 (2013)

    Article  Google Scholar 

  10. Dietz, A., Azzaro-Pantel, C., Pibouleau, L., Domenech, S.: Strategies for multiobjective genetic algorithm development: Application to optimal batch plant design in process systems engineering. Comput. Ind. Eng. 54(3), 539–569 (2008)

    Article  Google Scholar 

  11. Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theoret. Comput. Sci. 344(2–3), 243–278 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, pp. 227–263. Springer, New York (2010). doi:10.1007/978-1-4419-1665-5_8

    Chapter  Google Scholar 

  13. El Hamzaoui, Y., Bassam, A., Abatal, M., Rodríguez, J.A., Duarte-Villaseñor, M.A., Escobedo, L., Puga, S.A.: Flexibility in biopharmaceutical manufacturing using particle swarm algorithms and genetic algorithms. In: Schütze, O., Trujillo, L., Legrand, P., Maldonado, Y. (eds.) NEO 2015. SCI, vol. 663, pp. 149–171. Springer, Cham (2017). doi:10.1007/978-3-319-44003-3_7

    Chapter  Google Scholar 

  14. Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H.: Metaheuristic algorithms in modeling and optimization. In: Metaheuristic Applications in Structures and Infrastructures, pp. 1–24. Elsevier BV (2013)

    Google Scholar 

  15. Gonzalez-Pardo, A., Camacho, D.: A new CSP graph-based representation for ant colony optimization. In: 2013 IEEE Congress on Evolutionary Computation, pp. 689–696. Institute of Electrical and Electronics Engineers (IEEE), June 2013

    Google Scholar 

  16. Kallioras, N.A., Kepaptsoglou, K., Lagaros, N.D.: Transit stop inspection and maintenance scheduling: a GPU accelerated metaheuristics approach. Transp. Res. Part C Emerg. Technol. 55, 246–260 (2015)

    Article  Google Scholar 

  17. Khan, S., Bilal, M., Sharif, M., Sajid, M., Baig, R.: Solution of n-queen problem using ACO. In: 2009 IEEE 13th International Multitopic Conference, pp. 1–5. Institute of Electrical and Electronics Engineers (IEEE), December 2009

    Google Scholar 

  18. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee, T.S., Moslemipour, G., Ting, T.O., Rilling, D.: A novel hybrid ACO/SA approach to solve stochastic dynamic facility layout problem (SDFLP). In: Huang, D.-S., Gupta, P., Zhang, X., Premaratne, P. (eds.) ICIC 2012. CCIS, vol. 304, pp. 100–108. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31837-5_15

    Chapter  Google Scholar 

  20. NVIDIA Corporation: CUDA C programming guide 8.0, September 2016. http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

  21. Ponsich, A., Coello, C.C.: Differential evolution performances for the solution of mixed-integer constrained process engineering problems. Appl. Soft Comput. 11(1), 399–409 (2011)

    Article  Google Scholar 

  22. Pourvaziri, H., Azimi, P.: A tuned-parameter hybrid algorithm for dynamic facility layout problem with budget constraint using GA and SAA. J. Optim. Ind. Eng. 7(15), 65–75 (2014)

    Google Scholar 

  23. Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  24. Solnon, C.: Ant Colony Optimization and Constraint Programming. Wiley Inc., Hoboken (2010)

    MATH  Google Scholar 

  25. Stützle, T., López-Ibánez, M., Pellegrini, P., Maur, M., de Oca, M.M., Birattari, M., Dorigo, M.: Parameter adaptation in ant colony optimization. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 191–215. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21434-9_8

    Chapter  Google Scholar 

  26. Valadi, J., Siarry, P.: Applications of Metaheuristics in Process Engineering. Springer Science & Business Media, Heidelberg (2014)

    Book  MATH  Google Scholar 

  27. Wei, K.C., Wu, C.C., Yu, H.L.: Mapping the simulated annealing algorithm onto CUDA GPUs. In: 2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), pp. 1–8, November 2015

    Google Scholar 

  28. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Bristol (2010)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the DAAD (German Academic Exchange Service) and by the Ministry of Education and Science of the Russian Federation under the “Mikhail Lomonosov II”-Programme, as well as by the German Research Agency (DFG) in the framework of the Cluster of Excellence CiM at the University of Muenster. We also thank the Nvidia Corp. for the donated hardware used in our experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Borisenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Borisenko, A., Gorlatch, S. (2017). Parallelizing Metaheuristics for Optimal Design of Multiproduct Batch Plants on GPU. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2017. Lecture Notes in Computer Science(), vol 10421. Springer, Cham. https://doi.org/10.1007/978-3-319-62932-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62932-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62931-5

  • Online ISBN: 978-3-319-62932-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics