Abstract
In this paper, we present an approach to automatically classify tissues of the cardiovascular system using texture information. Additionally, this process makes possible to identify some cardiovascular organs, since some tissues belong to muscles associated to those, i.e. identifying the tissue makes possible to identify the organ. We have assessed rotation invariant Local Binary Patterns (LBPri) and Haralick features to describe the content of histological images. We also assessed Random Forest (RF) and Linear Discriminant Analysis (LDA) for the classification of these descriptors. The tissues were classified into four classes: (i) cardiac muscle of the heart, (ii) smooth muscle of the elastic artery, (iii) loose connective tissue, and (iv) smooth muscle of the large vein and the elastic artery. The experimental validation is conducted with a set of 2400 blocks of \(100\times 100\) pixels each. The classifier was assessed using a 10-fold cross-validation. The best AUCs (0.9875, 0.9994 and 0.9711 for the cardiac muscle of the heart, the smooth muscle of muscular artery, the smooth muscle of the large vein and the elastic artery classes, respectively) are achieved by LBPri and RF.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Izet, M.: E-learning as new method of medical education. Acta Informatica Medica 16(2), 102–117 (2008). http://dx.doi.org/10.5455/aim.2008.16.102-117
Ruiz, J., Mintzer, M., Leipzig, R.: The impact of e-learning in medical education. Acad. Med. 81(3), 207–212 (2006)
Hernadez, A.I., Porta, S.M., Miralles, M., Garca, B.F., Bolmar, F.: La cuanticacin de la variabilidad en las observaciones clnicas. Med. Clin. 424–429 (1990). http://www.ncbi.nlm.nih.gov/pubmed/2082114?dopt=Abstract
Nanni, L., Lumini, A., Brahnam, S.: Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 49(2), 117–125 (2010). doi:10.1016/j.artmed.2010.02.006
Herve, N., Servais, A., Thervet, E., Olivo-Marin, J.-C., Meas-Yedid, V.: Statistical color texture descriptors for histological images analysis. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 724–727 (2011). doi:10.1109/ISBI.2011.5872508
Ojansivu, V., Linder, N., Rahtu, E., Pietikinen, M., Lundin, M., Joen-Suu, H., Lundin, J.: Automated classification of breast cancer morphology in histopathological images. Diagn. Pathol. 8(Suppl. 1), S29 (2013)
Mazo, C., Trujillo, M., Salazar, L.: An automatic segmentation approach of epithelial cells nuclei. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 567–574. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33275-3_70
Nanni, L., Paci, M., dos Santos, F.C., Skottman, H., Juuti-Uusitalo, K., Hyttinen, J.: Texture descriptors ensembles enable image-based classification of maturation of human stem cell-derived retinal pigmented epithelium. PLoS ONE 11(2), e0149399 (2016). doi:10.1371/journal.pone.0149399
Diamond, J., Anderson, N.H., Bartels, P.H., Montironi, R., Hamilton, P.W.: The use of morphological characteristics and texture analysis in the identification of tissue composition in prostatic neoplasia. Hum. Pathol. 35(9), 1121–1131 (2004)
Mazo, C., Trujillo, M., Salazar, L.: Identifying loose connective and muscle tissues on histology images. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013. LNCS, vol. 8259, pp. 174–180. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41827-3_265 22
Zhao, D., Chen, Y., Correa, N.: Statistical categorization of human histological images. In: IEEE International Conference on Image Processing, ICIP 2005, vol. 3, pp. 628–631 (2005). doi:10.1109/ICIP.2005.1530470
Yu, F., Ip, H., Horace, H.S.: Semantic content analysis and annotation of histological images. Comput. Biol. Med. 38(6), 635–649 (2008). doi:10.1016/j.compbiomed.2008.02.004
Boya, J.: Atlas de Histología y Organografía Microscópica. Editorial Medica Panamericana S.A., Madrid (2011)
Mazo, C., Trujillo, M., Salazar, L.: Automatic classication of coating epithelial tissue. In: Bayro-Corrochano, E., Hancock, E. (eds.) CIARP 2014. LNCS, vol. 8827, pp. 311–318. Springer, Cham (2014). doi:10.1007/978-3-319-12568-8_38
Pietikinen, M., Ojala, T., Xu, Z.: Rotation-invariant texture classication using feature distributions. Pattern Recogn. 33, 43–52 (2000)
Bader-El-Den, M.: Self-adaptive heterogeneous random forest. In: 2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA), pp. 640–646 (2014). doi:10.1109/AICCSA.2014.7073259
Ghassabeh, Y.A., Rudzicz, F., Moghaddam, H.A.: Fast incremental LDA feature extraction. Pattern Recogn. 48(6), 1999–2012 (2015). doi:10.1016/j.patcog.2014.12.012
Kylberg, G., Sintorn, I.-M.: Evaluation of noise robustness for local binary pattern descriptors in texture classification. EURASIP J. Image Video Process. 2013, 17 (2013). http://dblp.uni-trier.de/db/journals/ejivp/ejivp2013.html#KylbergS13
Canada, B.A., Thomas, G.K., Cheng, K.C., Wang, J.Z., Liu, Y.: Towards efficient automated characterization of irregular histology images via transformation to frieze-like patterns. In: CIVR, pp. 581–590. ACM (2008)
Oliveira, D.L., Nascimento, M.Z., Neves, L.A., Batista, V.R., Godoy, M.F., Jacomini, R.S., Duarte, Y.A., Arruda, P.F., Neto, D.S.: Automatic classification of prostate stromal tissue in histological images using Haralick descriptors and local binary patterns. In: Journal of Physics: Conference Series, vol. 490, no. 1 (2013). http://stacks.iop.org/1742-6596/490/i=1/a=012151
Alturkistani, H.A., Tashkandi, F.M., Mohammedsaleh, Z.M.: Histological stains: a literature review and case study. Glob. J. Health Sci. 8(3), 72–79 (2016). http://doi.org/10.5539/gjhs.v8n3p72
Acknowledgements
This work has been supported by COLCIENCIAS and Asociación Universitaria Iberoamericana de Postgrado, AUIP. We thank Liliana Salazar, M.Sc., for providing insight and expertise that greatly assisted the research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Mazo, C., Alegre, E., Trujillo, M., González-Castro, V. (2017). Tissues Classification of the Cardiovascular System Using Texture Descriptors. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-60964-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60963-8
Online ISBN: 978-3-319-60964-5
eBook Packages: Computer ScienceComputer Science (R0)