Nothing Special   »   [go: up one dir, main page]

Skip to main content

Tissues Classification of the Cardiovascular System Using Texture Descriptors

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2017)

Abstract

In this paper, we present an approach to automatically classify tissues of the cardiovascular system using texture information. Additionally, this process makes possible to identify some cardiovascular organs, since some tissues belong to muscles associated to those, i.e. identifying the tissue makes possible to identify the organ. We have assessed rotation invariant Local Binary Patterns (LBPri) and Haralick features to describe the content of histological images. We also assessed Random Forest (RF) and Linear Discriminant Analysis (LDA) for the classification of these descriptors. The tissues were classified into four classes: (i) cardiac muscle of the heart, (ii) smooth muscle of the elastic artery, (iii) loose connective tissue, and (iv) smooth muscle of the large vein and the elastic artery. The experimental validation is conducted with a set of 2400 blocks of \(100\times 100\) pixels each. The classifier was assessed using a 10-fold cross-validation. The best AUCs (0.9875, 0.9994 and 0.9711 for the cardiac muscle of the heart, the smooth muscle of muscular artery, the smooth muscle of the large vein and the elastic artery classes, respectively) are achieved by LBPri and RF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Izet, M.: E-learning as new method of medical education. Acta Informatica Medica 16(2), 102–117 (2008). http://dx.doi.org/10.5455/aim.2008.16.102-117

    Article  Google Scholar 

  2. Ruiz, J., Mintzer, M., Leipzig, R.: The impact of e-learning in medical education. Acad. Med. 81(3), 207–212 (2006)

    Article  Google Scholar 

  3. Hernadez, A.I., Porta, S.M., Miralles, M., Garca, B.F., Bolmar, F.: La cuanticacin de la variabilidad en las observaciones clnicas. Med. Clin. 424–429 (1990). http://www.ncbi.nlm.nih.gov/pubmed/2082114?dopt=Abstract

  4. Nanni, L., Lumini, A., Brahnam, S.: Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 49(2), 117–125 (2010). doi:10.1016/j.artmed.2010.02.006

    Article  Google Scholar 

  5. Herve, N., Servais, A., Thervet, E., Olivo-Marin, J.-C., Meas-Yedid, V.: Statistical color texture descriptors for histological images analysis. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 724–727 (2011). doi:10.1109/ISBI.2011.5872508

  6. Ojansivu, V., Linder, N., Rahtu, E., Pietikinen, M., Lundin, M., Joen-Suu, H., Lundin, J.: Automated classification of breast cancer morphology in histopathological images. Diagn. Pathol. 8(Suppl. 1), S29 (2013)

    Google Scholar 

  7. Mazo, C., Trujillo, M., Salazar, L.: An automatic segmentation approach of epithelial cells nuclei. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 567–574. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33275-3_70

    Chapter  Google Scholar 

  8. Nanni, L., Paci, M., dos Santos, F.C., Skottman, H., Juuti-Uusitalo, K., Hyttinen, J.: Texture descriptors ensembles enable image-based classification of maturation of human stem cell-derived retinal pigmented epithelium. PLoS ONE 11(2), e0149399 (2016). doi:10.1371/journal.pone.0149399

    Article  Google Scholar 

  9. Diamond, J., Anderson, N.H., Bartels, P.H., Montironi, R., Hamilton, P.W.: The use of morphological characteristics and texture analysis in the identification of tissue composition in prostatic neoplasia. Hum. Pathol. 35(9), 1121–1131 (2004)

    Article  Google Scholar 

  10. Mazo, C., Trujillo, M., Salazar, L.: Identifying loose connective and muscle tissues on histology images. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013. LNCS, vol. 8259, pp. 174–180. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41827-3_265 22

    Chapter  Google Scholar 

  11. Zhao, D., Chen, Y., Correa, N.: Statistical categorization of human histological images. In: IEEE International Conference on Image Processing, ICIP 2005, vol. 3, pp. 628–631 (2005). doi:10.1109/ICIP.2005.1530470

  12. Yu, F., Ip, H., Horace, H.S.: Semantic content analysis and annotation of histological images. Comput. Biol. Med. 38(6), 635–649 (2008). doi:10.1016/j.compbiomed.2008.02.004

    Article  Google Scholar 

  13. Boya, J.: Atlas de Histología y Organografía Microscópica. Editorial Medica Panamericana S.A., Madrid (2011)

    Google Scholar 

  14. Mazo, C., Trujillo, M., Salazar, L.: Automatic classication of coating epithelial tissue. In: Bayro-Corrochano, E., Hancock, E. (eds.) CIARP 2014. LNCS, vol. 8827, pp. 311–318. Springer, Cham (2014). doi:10.1007/978-3-319-12568-8_38

    Google Scholar 

  15. Pietikinen, M., Ojala, T., Xu, Z.: Rotation-invariant texture classication using feature distributions. Pattern Recogn. 33, 43–52 (2000)

    Article  Google Scholar 

  16. Bader-El-Den, M.: Self-adaptive heterogeneous random forest. In: 2014 IEEE/ACS 11th International Conference on Computer Systems and Applications (AICCSA), pp. 640–646 (2014). doi:10.1109/AICCSA.2014.7073259

  17. Ghassabeh, Y.A., Rudzicz, F., Moghaddam, H.A.: Fast incremental LDA feature extraction. Pattern Recogn. 48(6), 1999–2012 (2015). doi:10.1016/j.patcog.2014.12.012

    Article  Google Scholar 

  18. Kylberg, G., Sintorn, I.-M.: Evaluation of noise robustness for local binary pattern descriptors in texture classification. EURASIP J. Image Video Process. 2013, 17 (2013). http://dblp.uni-trier.de/db/journals/ejivp/ejivp2013.html#KylbergS13

    Article  Google Scholar 

  19. Canada, B.A., Thomas, G.K., Cheng, K.C., Wang, J.Z., Liu, Y.: Towards efficient automated characterization of irregular histology images via transformation to frieze-like patterns. In: CIVR, pp. 581–590. ACM (2008)

    Google Scholar 

  20. Oliveira, D.L., Nascimento, M.Z., Neves, L.A., Batista, V.R., Godoy, M.F., Jacomini, R.S., Duarte, Y.A., Arruda, P.F., Neto, D.S.: Automatic classification of prostate stromal tissue in histological images using Haralick descriptors and local binary patterns. In: Journal of Physics: Conference Series, vol. 490, no. 1 (2013). http://stacks.iop.org/1742-6596/490/i=1/a=012151

  21. Alturkistani, H.A., Tashkandi, F.M., Mohammedsaleh, Z.M.: Histological stains: a literature review and case study. Glob. J. Health Sci. 8(3), 72–79 (2016). http://doi.org/10.5539/gjhs.v8n3p72

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by COLCIENCIAS and Asociación Universitaria Iberoamericana de Postgrado, AUIP. We thank Liliana Salazar, M.Sc., for providing insight and expertise that greatly assisted the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Mazo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mazo, C., Alegre, E., Trujillo, M., González-Castro, V. (2017). Tissues Classification of the Cardiovascular System Using Texture Descriptors. In: Valdés Hernández, M., González-Castro, V. (eds) Medical Image Understanding and Analysis. MIUA 2017. Communications in Computer and Information Science, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-60964-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60964-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60963-8

  • Online ISBN: 978-3-319-60964-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics