Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Neural Network Model Based Adaptive Flight Control System

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10251))

  • 3524 Accesses

Abstract

The study of neural network controller has become increasingly mature as plenty of simulations were conducted to verify the theoretical analysis. In this paper, a neural network model based flight control system is proposed. This model is capable of sensing interference caused by change of the mathematical model of aircraft, so that it can start or stop the learning process automatically. The flight controller equipped with this model can adjust the learning step due to the intensity of interference during the learning process. Furthermore, the convergence time of control error is shortened to a ultra low level. Comparative experiments on aircraft confirm that the proposed neural network model has high adaptability, which illustrates its good performance under different aircraft models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chang, W.D., Shih, S.P.: PID controller design of nonlinear systems using an improved particle swarm optimization approach. Commun. Nonlinear Sci. Numer. Simul. 15(11), 3632–3639 (2010)

    Article  MATH  Google Scholar 

  2. Cheng, L., Hou, Z.G., Tan, M., Lin, Y., Zhang, W.: Neural-network-based adaptive leader-following control for multiagent systems with uncertainties. IEEE Trans. Neural Netw. 21(8), 1351–1358 (2010)

    Article  Google Scholar 

  3. Dequan, S., Guili, G., Zhiwei, G., Peng, X.: Application of expert fuzzy pid method for temperature control of heating furnace. Procedia Eng. 29, 257–261 (2012)

    Article  Google Scholar 

  4. Fang, M.C., Zhuo, Y.Z., Lee, Z.Y.: The application of the self-tuning neural network PID controller on the ship roll reduction in random waves. Ocean Eng. 37(7), 529–538 (2010)

    Article  Google Scholar 

  5. Ge, S.S., Hang, C.C., Lee, T.H., Zhang, T.: Stable Adaptive Neural Network Control, vol. 13. Springer Science & Business Media, Heidelberg (2013)

    MATH  Google Scholar 

  6. Ge, S.S., Hong, F., Lee, T.H.: Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34(1), 499–516 (2004)

    Article  Google Scholar 

  7. Gutierrez, L.B., Lewis, F.L., Lowe, J.A.: Implementation of a neural network tracking controller for a single flexible link: comparison with PD and PID controllers. IEEE Trans. Industr. Electron. 45(2), 307–318 (1998)

    Article  Google Scholar 

  8. Isogai, M., Arai, F., Fukuda, T.: Modeling and vibration control with neural network for flexible multi-link structures. In: Proceedings of 1999 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1096–1101. IEEE (1999)

    Google Scholar 

  9. Lewis, F., Jagannathan, S., Yesildirak, A.: Neural Network Control of Robot Manipulators and Non-linear Systems. CRC Press, Boca Raton (1998)

    Google Scholar 

  10. Lian, R.J.: Adaptive self-organizing fuzzy sliding-mode radial basis-function neural-network controller for robotic systems. IEEE Trans. Industr. Electron. 61(3), 1493–1503 (2014)

    Article  Google Scholar 

  11. Matallanas, E., Castillo-Cagigal, M., Gutiérrez, A., Monasterio-Huelin, F., Caamaño-Martín, E., Masa, D., Jiménez-Leube, J.: Neural network controller for active demand-side management with PV energy in the residential sector. Appl. Energy 91(1), 90–97 (2012)

    Article  Google Scholar 

  12. Öke, G., İstefanopulos, Y.: End-effector trajectory control in a two-link flexible manipulator through reference joint angle values modification by neural networks. J. Vib. Control 12(2), 101–117 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (1991)

    Article  Google Scholar 

  14. Polycarpou, M.M., Mears, M.J.: Stable adaptive tracking of uncertain systems using nonlinearly parametrized on-line approximators. Int. J. Control 70(3), 363–384 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shah, R., Mithulananthan, N., Lee, K.Y.: Large-scale PV plant with a robust controller considering power oscillation damping. IEEE Trans. Energy Convers. 28(1), 106–116 (2013)

    Article  Google Scholar 

  16. Sun, C., He, W., Hong, J.: Neural network control of a flexible robotic manipulator using the lumped spring-mass model. IEEE Trans. Syst. Man Cybern.: Syst. (2016)

    Google Scholar 

  17. Wang, D., Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. 16(1), 195–202 (2005)

    Article  Google Scholar 

  18. Xu, B., Sun, F., Yang, C., Gao, D., Ren, J.: Adaptive discrete-time controller design with neural network for hypersonic flight vehicle via back-stepping. Int. J. Control 84(9), 1543–1552 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xu, B., Zhang, Q., Pan, Y.: Neural network based dynamic surface control of hypersonic flight dynamics using small-gain theorem. Neurocomputing 173, 690–699 (2016)

    Article  Google Scholar 

  20. Zhang, H., Qin, C., Luo, Y.: Neural-network-based constrained optimal control scheme for discrete-time switched nonlinear system using dual heuristic programming. IEEE Trans. Autom. Sci. Eng. 11(3), 839–849 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaqi Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Liang, J., Du, W., Xing, K., Zhong, C. (2017). A Neural Network Model Based Adaptive Flight Control System. In: Ma, L., Khreishah, A., Zhang, Y., Yan, M. (eds) Wireless Algorithms, Systems, and Applications. WASA 2017. Lecture Notes in Computer Science(), vol 10251. Springer, Cham. https://doi.org/10.1007/978-3-319-60033-8_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60033-8_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60032-1

  • Online ISBN: 978-3-319-60033-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics