Nothing Special   »   [go: up one dir, main page]

Skip to main content

Text Mining Models to Predict Brain Deaths Using X-Rays Clinical Notes

  • Conference paper
  • First Online:
Mining Intelligence and Knowledge Exploration (MIKE 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10089))

Abstract

The prediction of events is a task associated to the Data Science area. In the health, this method is extremely useful to predict critical events that may occur in people, or in a specific area. The Text Mining is a technique that consists in retrieving information from text files. In the Medical Field, the Data Mining and Text Mining solutions can help to prevent the occurrence of certain events to a patient. This project involves the use of Text Mining to predict the Brain Death by using the X-Ray clinical notes. This project is creating reliable predictive models with non-structured text. This project was developed using real data provided by Centro Hospitalar do Porto. The results achieved are very good reaching a sensitivity of 98% and a specificity of 88%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hearst, M.A.: Untangling text data mining. In: Proceedings of 37th Annual Meeting of the Association for Computational Linguistics on Computational Linguistics, pp. 3–10 (1999). doi:10.3115/1034678.1034679

  2. Tan, A.-H.: Text mining: the state of the art and the challenges. In: Proceedings of the PAKDD 1999 Workshop on Knowledge Disocovery from Advanced Databases, vol. 8, pp. 65–70 (1999). doi:10.1.1.132.6973

    Google Scholar 

  3. Truyens, M., Van Eecke, P.: Legal aspects of text mining. Comput. Law Secur. Rev. 30(2), 153–170 (2014). doi:10.1016/j.clsr.2014.01.009

    Article  Google Scholar 

  4. Gamberger, D., Prcela, M., Jovi, A., Šmuc, T., Candelieri, A., Conforti, D., Guido, R.: Medical knowledge representation within Heartfaid platform. In: Proceedings of Biostec 2008 International Joint Conference on Biomedical Engineering Systems and Technologies, pp. 205–217 (2008). doi:10.5220/0001045203070314

  5. El-sappagh, S.H.: A distributed clinical decision support system architecture. J. King Saud Univ. – Comput. Inf. Sci. 26(1), 69–78 (2014). doi:10.1016/j.jksuci.2013.03.005

    Google Scholar 

  6. Portela, F., Pinto, F., Santos, M.F.: Data mining predictive models for pervasive intelligent decision support in intensive care. In: KMIS 2012 - Knowledge Management and Information Sharing, pp. 81–88. SciTePress, Barcelona (2012)

    Google Scholar 

  7. Portela, F., Santos, M.F., Machado, J., Abelha, A., Silva, Á.: Pervasive and intelligent decision support in critical health care using ensembles. In: Bursa, M., Khuri, S., Renda, M.E. (eds.) ITBAM 2013. LNCS, vol. 8060, pp. 1–16. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40093-3_1. ISBN 978-3-642-40093-3

    Chapter  Google Scholar 

  8. Veloso, R., Portela, F., Santos, M.F., Silva, Á., Rua, F., Abelha, A., Machado, J.: Using domain knowledge to improve intelligent decision support in intensive medicine - a study of bacteriological infections. In: ICAART 2015 - 7th International Conference on Agents and Artificial Intelligence, pp 582 – 587. SciTePress, Lisbon (2015). ISBN:978-989-758-074-1

    Google Scholar 

  9. Alanazi, H.O., Jalab, H.A., Alam, G.M., Zaidan, B.B., Zaidan, A.A.: Securing electronic medical records transmissions over unsecured communications: an overview for better medical governance. J. Med. Plants Res. 4(19), 2059–2074 (2010). doi:10.5897/JMPR10.325

    Article  Google Scholar 

  10. Wijdicks, E.F.M.: Brain death worldwide (2007). doi:10.1212/WNL.58.1.20

  11. Wijdicks, F.M.E.: Determining brain death in adults, May 1995. doi:10.1212/WNL.45.5.1003

  12. Brock, D.: The role of the public in public policy on the definition of death. In: Younger, S.J., Arnold, R.M., Schapiro, R. (eds.) The Definition of Death: Contemporany Controversies, pp. 293–307. Hopkins University Press, Baltimore (1999)

    Google Scholar 

  13. Greer, D.M., Varelas, P.N., Haque, S., Wijdicks, E.F.M.: Variability of brain death determination guidelines in leading US neurologic institutions. Neurology 70(4), 284–289 (2008). doi:10.1212/01.wnl.0000296278.59487.c2

    Article  Google Scholar 

  14. Pereira, L., Rijo, R., Silva, C., Agostinho, M.: ICD9-based text mining approach to children epilepsy classification. Procedia Technol. 9, 1351–1360 (2013). doi:10.1016/j.protcy.2013.12.152

    Article  Google Scholar 

  15. Cormack, J., Nath, C., Milward, D., Raja, K., Jonnalagadda, S.R.: Agile text mining for the i2b2/UTHealth cardiac risk factors challenge. J. Biomed. Inform. 58, S120–S127 (2014). doi:10.1016/j.jbi.2015.06.030

    Article  Google Scholar 

  16. Jonnagaddala, J., Liaw, S.-T., Ray, P., Kumar, M., Chang, N.-W., Dai, H.-J.: Coronary artery disease risk assessment from unstructured electronic health records using text mining. J. Biomed. Inform. 58, S203–S210 (2015). doi:10.1016/j.jbi.2015.08.003

    Article  Google Scholar 

  17. Hevner, A., March, S., Park, J.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004). doi:10.2307/25148625

    Google Scholar 

  18. Santos, M.F., Azevedo, C.S.: Data Mining: Descoberta de Conhecimento em Bases de Dados. FCA - Editora de informática, Lda, Lisbon (2005)

    Google Scholar 

  19. Witten, I., Frank, E., Hall, M.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Massachusetts (2011)

    Google Scholar 

  20. Halkidi, M., Vazirgiannis, M.: Quality assessment approaches in data mining. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 613–640. Springer, Heidelberg (2005). doi:10.1007/978-0-387-09823-4_31

    Google Scholar 

  21. Silva, A., Portela, F., Santos, M.F., Machado, J., Abelha, A.: Towards of automatically detecting brain death patterns through text mining. In: IEEE Conference on Business Informatics - ISA’HEALTH@CBI 2016 - Intelligent Systems and Applications in Healthcare Workshop (2016)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by Compete: POCI-01-0145-FEDER-007043 and FCT - Fundação para a Ciência e Tecnologia within the Project Scope UID/CEC/00319/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipe Portela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Silva, A., Portela, F., Santos, M.F., Machado, J., Abelha, A. (2017). Text Mining Models to Predict Brain Deaths Using X-Rays Clinical Notes. In: Prasath, R., Gelbukh, A. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2016. Lecture Notes in Computer Science(), vol 10089. Springer, Cham. https://doi.org/10.1007/978-3-319-58130-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58130-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58129-3

  • Online ISBN: 978-3-319-58130-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics