Abstract
In recent years, there has been a growing interest on tackling the Non-Rigid Structure from Motion problem (NRSfM), where the shape of a deformable object and the pose of a moving camera are simultaneously estimated from a monocular video sequence. Existing solutions are limited to single objects and continuous, smoothly changing sequences. In this paper we extend NRSfM to a multi-instance domain, in which the images do not need to have temporal consistency, allowing for instance, to jointly reconstruct the face of multiple persons from an unordered list of images. For this purpose, we present a new formulation of the problem based on a dual low-rank shape representation, that simultaneously captures the between- and within-individual deformations. The parameters of this model are learned using a variant of the probabilistic linear discriminant analysis that requires consecutive batches of expectation and maximization steps. The resulting approach estimates 3D deformable shape and pose of multiple instances from only 2D point observations on a collection images, without requiring pre-trained 3D data, and is shown to be robust to noisy measurements and missing points. We provide quantitative and qualitative evaluation on both synthetic and real data, and show consistent benefits compared to current state of the art.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Videos can be found on website: http://www.iri.upc.edu/people/aagudo.
References
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment - a modern synthesis. Vis. Algorithms Theory Pract. 1883, 298–372 (2000)
Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a day. In: ICCV (2009)
Lim, J., Frahm, J., Pollefeys, M.: Online environment mapping. In: CVPR (2011)
Torresani, L., Hertzmann, A., Bregler, C.: Nonrigid structure-from-motion: estimating shape and motion with hierarchical priors. TPAMI 30, 878–892 (2008)
Gotardo, P.F.U., Martinez, A.M.: Kernel non-rigid structure from motion. In: ICCV (2011)
Lee, M., Cho, J., Choi, C.H., Oh, S.: Procrustean normal distribution for non-rigid structure from motion. In: CVPR (2013)
Chhatkuli, A., Pizarro, D., Bartoli, A.: Non-rigid shape-from-motion for isometric surfaces using infinitesimal planarity. In: BMVC (2014)
Agudo, A., Moreno-Noguer, F.: Learning shape, motion and elastic models in force space. In: ICCV (2015)
Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3D shape from image streams. In: CVPR (2000)
Bartoli, A., Gay-Bellile, V., Castellani, U., Peyras, J., Olsen, S., Sayd, P.: Coarse-to-fine low-rank structure-from-motion. In: CVPR (2008)
Paladini, M., Del Bue, A., Stosic, M., Dodig, M., Xavier, J., Agapito, L.: Factorization for non-rigid and articulated structure using metric projections. In: CVPR (2009)
Dai, Y., Li, H., He, M.: A simple prior-free method for non-rigid structure from motion factorization. In: CVPR (2012)
Zhu, Y., Huang, D., De La Torre, F., Lucey, S.: Complex non-rigid motion 3D reconstruction by union of subspaces. In: CVPR (2014)
Garg, R., Roussos, A., Agapito, L.: Dense variational reconstruction of non-rigid surfaces from monocular video. In: CVPR (2013)
Paladini, M., Bartoli, A., Agapito, L.: Sequential non rigid structure from motion with the 3D implicit low rank shape model. In: ECCV (2010)
Agudo, A., Montiel, J.M.M., Agapito, L., Calvo, B.: Online dense non-rigid 3D shape and camera motion recovery. In: BMVC (2014)
Lee, M., Choi, C.H., Oh, S.: A procrustean Markov process for non-rigid structure recovery. In: CVPR (2014)
Akhter, I., Sheikh, Y., Khan, S., Kanade, T.: Non-rigid structure from motion in trajectory space. In: NIPS (2008)
Gotardo, P.F.U., Martinez, A.M.: Non-rigid structure from motion with complementary rank-3 spaces. In: CVPR (2011)
Agudo, A., Moreno-Noguer, F., Calvo, B., Montiel, J.M.M.: Sequential non-rigid structure from motion using physical priors. TPAMI 38, 979–994 (2016)
Agudo, A., Agapito, L., Calvo, B., Montiel, J.M.M.: Good vibrations: a modal analysis approach for sequential non-rigid structure from motion. In: CVPR (2014)
Agudo, A., Moreno-Noguer, F.: Simultaneous pose and non-rigid shape with particle dynamics. In: CVPR (2015)
Li, P., Fu, Y., Mohammed, U., Elder, J.H., Prince, S.J.D.: Probabilistic models for inference about identity. TPAMI 34, 144–157 (2012)
Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: SIGGRAPH (1999)
Agudo, A., Montiel, J.M.M., Agapito, L., Calvo, B.: Modal space: a physics-based model for sequential estimation of time-varying shape from monocular video. JMIV 57(1), 75–98 (2016)
Barbic, J., James, D.: Real-time subspace integration for St. Venant-Kirchhoff deformable models. TOG 24, 982–990 (2005)
Agudo, A., Montiel, J.M.M., Calvo, B., Moreno-Noguer, F.: Mode-shape interpretation: re-thinking modal space for recovering deformable shapes. In: WACV (2016)
Xiao, J., Chai, J., Kanade, T.: A closed-form solution to non-rigid shape and motion. IJCV 67, 233–246 (2006)
Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization approach. IJCV 9, 137–154 (1992)
Del Bue, A., Llado, X., Agapito, L.: Non-rigid metric shape and motion recovery from uncalibrated images using priors. In: CVPR (2006)
Valmadre, J., Lucey, S.: General trajectory prior for non-rigid reconstruction. In: CVPR (2012)
Gotardo, P.F.U., Martinez, A.M.: Computing smooth time-trajectories for camera and deformable shape in structure from motion with occlusion. TPAMI 33, 2051–2065 (2011)
Simon, T., Valmadre, J., Matthews, I., Sheikh, Y.: Separable spatiotemporal priors for convex reconstruction of time-varying 3D point clouds. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 204–219. Springer, Cham (2014). doi:10.1007/978-3-319-10578-9_14
Sigal, L., Bhatia, S., Roth, S., Black, M.J., Isard, M.: Tracking loose-limbed people. In: CVPR (2004)
Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models. In: NIPS (2005)
Urtasun, R., Fleet, D., Fua, P.: 3D people tracking with Gaussian process dynamical models. In: CVPR (2006)
Fisher, R.A.: The statistical utilization of multiple measurements. Ann. Eugenics 8, 376–386 (1938)
Rao, C.R.: The utilization of multiple measurements in problems of biological classification. J. R. Stat. Soc. B 10, 159–203 (1948)
Prince, S.J.D., Elder, J.H.: Probabilistic linear discriminant analysis for inferences about identity. In: ICCV (2007)
Ioffe, S.: Probabilistic linear discriminant analysis. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 531–542. Springer, Heidelberg (2006). doi:10.1007/11744085_41
Woodbury, M.A.: Inverting modified matrices. Statistical Research Group, Memorandum Report 42 (1950)
Akhter, I., Simon, T., Khan, S., Matthews, I., Sheikh, Y.: Bilinear spatiotemporal basis models. TOG 31, 17:1–17:12 (2012)
Milborrow, S., Morkel, J., Nicolls, F.: The MUCT landmarked face database. Pattern Recognition Association of South Africa (2010)
Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998). doi:10.1007/BFb0054760
Acknowledgments
This work has been partially supported by the Spanish Ministry of Science and Innovation under project RobInstruct TIN2014-58178-R; by the ERA-net CHISTERA projects VISEN PCIN-2013-047 and I-DRESS PCIN-2015-147. The authors also thank Gerard Canal for fruitful discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Agudo, A., Moreno-Noguer, F. (2017). Recovering Pose and 3D Deformable Shape from Multi-instance Image Ensembles. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10114. Springer, Cham. https://doi.org/10.1007/978-3-319-54190-7_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-54190-7_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54189-1
Online ISBN: 978-3-319-54190-7
eBook Packages: Computer ScienceComputer Science (R0)