Abstract
In this paper we propose a graph-coarsening approach that aims to speed-up the execution time of graph-based tag recommenders in large-scale folksonomies. A community detection algorithm in multiplex networks is applied for coarsening the hypergraph depicting a folksonomy. Experiments on real datasets show the validity of the approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gupta, M., Li, R., Yin, Z., Han, J.: Survey on social tagging techniques. SIGKDD Explorations 12(1) (2010) 58–72
Milicevic, A.K., Nanopoulos, A., Ivanovic, M.: Social tagging in recommender systems: a survey of the state-of-the-art and possible extensions. Artif. Intell. Rev. 33(3) (2010) 187–209
Fang, X., Pan, R., Cao, G., He, X., Dai, W.: Personalized tag recommendation through nonlinear tensor factorization using gaussian kernel. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA. (2015) 439–445 A graph-based meta-approach for tag recommendation 319
Feng, W., Wang, J.: Incorporating heterogeneous information for personalized tag recommendation in social tagging systems. In Yang, Q., Agarwal, D., Pei, J., eds.: The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’12, Beijing, China, August 12-16, 2012, ACM (2012) 1276–1284
Gemmell, J., Mobasher, B., Burke, R.D.: User partitioning hybrid for tag recommendation. In: User Modeling, Adaptation, and Personalization - 22nd International Conference, UMAP 2014, Aalborg, Denmark, July 7-11, 2014. Proceedings. (2014) 74–85
Jäschke, R., Marinho, L.B., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommendations in folksonomies. In: Knowledge Discovery in Databases: PKDD 2007, Warsaw, Poland (2007) 506–514
Papadopoulos, S., Kompatsiaris, Y., Vakali, A.: A graph-based clustering scheme for identifying related tags in folksonomies. In: DaWak. (2010) 65–76
Pujari, M., Kanawati, R.: Tag recommendation by link prediction based on supervised machine learning. In: Sixth International AAAI Conference on Weblogs and Social Media (ICWSM’2012), Dublin (June 2012) 547–550
Rawashdeh, M., Alhamid, M.F., Kim, H., Alnusair, A., Maclsaac, V., El-Saddik, A.: Graphbased personalized recommendation in social tagging systems. In: 2013 IEEE International Conference on Multimedia and Expo Workshops, Chengdu, China, July 14-18, 2014. (2014) 1–6
Rawashdeh, M., Kim, H., Alja’am, J.M., El-Saddik, A.: Folksonomy link prediction based on a tripartite graph for tag recommendation. J. Intell. Inf. Syst. 40(2) (2013) 307–325
Gueye, M., Abdessalem, T., Naacke, H.: Strec: An improved graph-based tag recommender. In: Proceedings of the Fifth ACM RecSysWorkshop on Recommender Systems and the Social Web co-located with the 7th ACM Conference on Recommender Systems (RecSys 2013), Hong Kong, China, October 13, 2013. (2013)
Kim, H.N., El-Saddik, A.: Personalized pagerank vectors for tag recommendations: inside folkrank. In: ACM conference on Recommender systems. (2011) 45–52
Guan, Z., Bu, J., Mei, Q., Chen, C., Wang, C.: Personalized tag recommendation using graph-based ranking on multi-type interrelated objects. In: Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2009, Boston, MA, USA, July 19-23, 2009. (2009) 540–547
Song, Y., Zhang, L., Giles, C.L.: Automatic tag recommendation algorithms for social recommender systems. TWEB 5(1) (2011) 4
Kubatz, M., Gedikli, F., Jannach, D.: Localrank - neighborhood-based, fast computation of tag recommendations. In: E-Commerce and Web Technologies - 12th International Conference, EC-Web 2011, Toulouse, France, August 30 - September 1, 2011. Proceedings. (2011) 258–269
Zhang, Z.K., Zhou, T., Zhang, Y.C.: Personalized recommendation via integrated diffusion on user-item-tag tripartite graphs. CoRR abs/0904.1989 (2009)
Liu, Z., Chi, C., Sun, M.: Folkdiffusion: A graph-based tag suggestion method for folksonomies. In: Information Retrieval Technology, Springer Berlin / Heidelberg (2010) 231–240
Kanawati, R.: Multiplex network mining: a brief survey. IEEE Intelligent Informatics Bulletin 16 (2015) 24–28
Hmimida, M., Kanawati, R.: Community detection in multiplex networks: a seed-centric approach. Networks and Heterogeneous Media 10(1) (March 2015) 71–85
Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5) (2010) 75–174
Berlingerio, M., Pinelli, F., Calabrese, F.: Abacus: frequent pattern mining-based community discovery in multidimensional networks. Data Min. Knowl. Discov. 27(3) (2013) 294–320
Cai, D., Shao, Z., He, X., Yan, X., Han, J.: Mining hidden community in heterogeneous social networks. In: ACM-SIGKDD Workshop on Link Discovery: Issues, Approaches and Applications (LinkKDD’05), Chicago, IL (Aug 2005)
Berlingerio, M., Coscia, M., Giannotti, F.: Finding and characterizing communities in multidimensional networks. In: ASONAM, IEEE Computer Society (2011) 490–494 320 Manel Hmimida and Rushed Kanawati
Strehl, A., Ghosh, J.: Cluster ensembles: a knowledge reuse framework for combining multiple partitions. The Journal of Machine Learning Research 3 (2003) 583–617
Goder, A., Filkov, V.: Consensus clustering algorithms: Comparison and refinement. In Munro, J.I., Wagner, D., eds.: ALENEX, SIAM (2008) 109–117
Topchy, A.P., Jain, A.K., Punch, W.F.: Clustering ensembles: Models of consensus and weak partitions. IEEE Trans. Pattern Anal. Mach. Intell. 27(12) (2005) 1866–1881
Kanawati, R.: Empirical evaluation of applying ensemble methods to ego-centered community identification in complex networks. Neurocomputing 150, B (February 2015) 417–427
Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980) (2010) 876–878
Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Physical Review E 74(1) (2006)
Blondel, V.D., Guillaume, J.l., Lefebvre, E.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008 (2008) P10008
Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. Graph Algorithms Appl. 10(2) (2006) 191–218
Rosvall, M., Axelsson, D., Bergstrom, C.T.: The map equation. Eur. Phys. J. Special Topics 13 (2009) 178
Kuncheva, Z., Montana, G.: Community detection in multiplex networks using locally adaptive random walks. In: MANEM 2workshop - Proceedings of ASONAM 2015, Paris (August 2015)
Domenico, M.D., Lancichinetti, A., Arenas, A., Rosvall, M.: Identifying modular flows on multilayer networks reveals highly overlapping organization in social systems. Phys. Rev 5 (2015) 011027
Yakoubi, Z., Kanawati, R.: Licod: Leader-driven approaches for community detection. Vietnam Journal of Computer Science 1(4) (2014) 241–256
Kanawati, R.: Seed-centric approaches for community detection in complex networks. In Meiselwitz, G., ed.: 6th international conference on Social Computing and Social Media. Volume LNCS 8531., Crete, Greece, Springer (June 2014) 197–208
Pujari, M., Kanawati, R.: Applying supervised rank aggregation to link prediction in large scale complex networks. In: Journ´ee : Big data mining and visualization, Tours (June 2012)
Battiston, F., Nicosia, V., Latora, V.: Metrics for the analysis of multiplex networks. CoRR abs/1308.3182 (2013)
Cantador, I., Brusilovsky, P., Kuflik., T., eds.: 2nd workshop on information heterogeneity and fusion in recommender systems (hetrec 2011)., York, NY, USA, ACM (2011)
Falih, I., Kanawati, R.: Muna: A multiplex network analysis library. In: The 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Paris (August 2015) 757–760
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Hmimida, M., Kanawati, R. (2017). A graph-based meta-approach for tag recommendation. In: Cherifi, H., Gaito, S., Quattrociocchi, W., Sala, A. (eds) Complex Networks & Their Applications V. COMPLEX NETWORKS 2016 2016. Studies in Computational Intelligence, vol 693. Springer, Cham. https://doi.org/10.1007/978-3-319-50901-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-50901-3_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50900-6
Online ISBN: 978-3-319-50901-3
eBook Packages: EngineeringEngineering (R0)