Nothing Special   »   [go: up one dir, main page]

Skip to main content

Algebraic Foundations for Specification Refinements

  • Conference paper
  • First Online:
Formal Methods: Foundations and Applications (SBMF 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10090))

Included in the following conference series:

  • 460 Accesses

Abstract

In this paper we present a mathematical framework tailored for reasoning about specification/program refinements. The proposed framework uses formal concepts coming from Institution Theory and Category Theory, such as theories and morphisms, to capture the notion of specification/program refinement. The main benefits of the proposed mathematical theory are its generality and compositionality, that is, it is based on abstract concepts that can be used to reason about refinements in different formal settings (such as Z, B, VDM, Alloy, statecharts and others), as well as it heavily relies upon the notion of component, thus enabling modular reasoning over the process of specification/program refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    \(\mathbf {Sign}^{op}\) denotes the dual category of Sign, obtained by reversing arrows. This is so since reducts and translations go in different directions.

  2. 2.

    In [23] this definition is stronger and the authors require that the sets of traces of both terms have to be the same, here we focus on refinement, and since that we only require an inclusion between the corresponding set of traces.

  3. 3.

    Note that this is straightforward to prove for standard cospans when we have a finitely cocomplete category.

References

  1. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  2. Back, R.J., von Wright, J.: Refinement Calculus: A Systematic Introduction. Springer, New York (1998)

    Book  MATH  Google Scholar 

  3. Barr, M., Wells, C.: Category Theory for Computer Science. Centre de Recherches Mathématiques, Université de Montréal, Montreal (1999)

    MATH  Google Scholar 

  4. Bird, R., de Moor, O.: Algebra of Programming. Prentice-Hall, Upper Saddle River (1997)

    MATH  Google Scholar 

  5. Borceux, F.: Handbook of Categorical Algebra. Basic Category Theory, Encyclopedia of Mathematics and its Applications, vol. 1. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  6. Cavalcanti, A.L.C.: A Refinement calculus for Z. Ph.D. thesis, Oxford University Computing Laboratory, Oxford, UK (1997)

    Google Scholar 

  7. Castro, P., Aguirre, N., Lopez Pombo, C., Maibaum, T.: Categorical foundations for structured specifications in Z. Form. Asp. Comput. 27(5–6), 831–865 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Diaconescu, R.: Grothendieck institutions. Appl. Categ. Struct. 10(4), 383–402 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diaconescu, R.: Institution-Independent Model Theory. Birkhäuser Verlag, Basel (2008)

    MATH  Google Scholar 

  10. Fiadeiro, J.: Categories for Software Engineering. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  11. Fiadeiro, J., Sernadas, A.: Structuring theories on consequence. In: Sannella, D., Tarlecki, A. (eds.) ADT 1987. LNCS, vol. 332, pp. 44–72. Springer, Heidelberg (1988). doi:10.1007/3-540-50325-0_3

    Chapter  Google Scholar 

  12. Fischer, C.: Combining CSP and Z. Technical report, University of Oldenburg (1996)

    Google Scholar 

  13. Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and programming. J. ACM 39(1), 95–146 (1992). ACM Press

    Article  MathSciNet  MATH  Google Scholar 

  14. He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined resume. In: Robinet, B., Wilhelm, R. (eds.) ESOP 1986. LNCS, vol. 213, pp. 187–196. Springer, Heidelberg (1986). doi:10.1007/3-540-16442-1_14

    Chapter  Google Scholar 

  15. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International, Upper Saddle River (1985)

    MATH  Google Scholar 

  16. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall International Series in Computer Science. Prentice-Hall, Upper Saddle River (1998)

    MATH  Google Scholar 

  17. Jackson, D.: Data Abstractions. Logic, Language, and Analysis. MIT Press, Cambridge (2006)

    Google Scholar 

  18. Johnson, M., Naumann, D., Power, J.: Category theoretic models of data refinement. Electr. Notes Theor. Comput. Sci. 225, 21–38 (2009)

    Article  MATH  Google Scholar 

  19. Jones, C.B.: Systematic Software Development Using VDM, 2nd edn. Prentice Hall, New York (1990)

    MATH  Google Scholar 

  20. Lack, S., Sobociński, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FoSSaCS 2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24727-2_20

    Chapter  Google Scholar 

  21. Lopes, A., Fiadeiro, J.: Superposition: composition vs refinement of non-deterministic, action-based systems. Form. Asp. Comput. 16(1), 5–18 (2004). Springer

    Article  MATH  Google Scholar 

  22. Mossakowski, T.: Heterogeneus specification and the heterogeneous tool set. Habilitation thesis (2005)

    Google Scholar 

  23. Mossakowski, T., Roggenbach, M.: Structured CSP – a process algebra as an institution. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 92–110. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71998-4_6

    Chapter  Google Scholar 

  24. Morgan, C.C.: Programming from Specifications. Prentice-Hall, Upper Saddle River (1990)

    MATH  Google Scholar 

  25. Rodrigues, C., Martins, M., Madeira, A., Barbosa, L.: Refinement by interpretation in \(\pi \)-institutions. In: Proceedings of the 15th International Refinement Workshop (2011)

    Google Scholar 

  26. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall, Upper Saddle River (1992)

    MATH  Google Scholar 

  27. Tarlecki, A.: Moving between logical systems. In: Haveraaen, M., Owe, O., Dahl, O.-J. (eds.) ADT/COMPASS -1995. LNCS, vol. 1130, pp. 478–502. Springer, Heidelberg (1996). doi:10.1007/3-540-61629-2_59

    Chapter  Google Scholar 

  28. Woodcock, J., Cavalcanti, A.L.C.: The semantics of Circus. In: Bert, D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp. 184–203. Springer, Heidelberg (2002). doi:10.1007/3-540-45648-1_10

    Chapter  Google Scholar 

  29. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo F. Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Castro, P.F., Aguirre, N. (2016). Algebraic Foundations for Specification Refinements. In: Ribeiro, L., Lecomte, T. (eds) Formal Methods: Foundations and Applications. SBMF 2016. Lecture Notes in Computer Science(), vol 10090. Springer, Cham. https://doi.org/10.1007/978-3-319-49815-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49815-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49814-0

  • Online ISBN: 978-3-319-49815-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics