Nothing Special   »   [go: up one dir, main page]

Skip to main content

Differential Evolution with Landscape-Based Operator Selection for Solving Numerical Optimization Problems

  • Conference paper
  • First Online:
Intelligent and Evolutionary Systems

Part of the book series: Proceedings in Adaptation, Learning and Optimization ((PALO,volume 8))

Abstract

In this paper, a new differential evolution framework is proposed. In it, the best-performing differential evolution mutation strategy, from a given set, is dynamically determined based on a problem’s landscape, as well as the performance history of each operator. The performance of the proposed algorithm has been tested on a set of 30 unconstrained single objective real-parameter optimization problems. The experimental results show that the proposed algorithm is capable of producing good solutions that are clearly better than those obtained from a set of considered state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Machine learning 47(2-3), 235–256 (2002)

    Article  MATH  Google Scholar 

  2. Bischl, B., Mersmann, O., Trautmann, H., Preuß, M.: Algorithm selection based on exploratory landscape analysis and cost-sensitive learning. In: Proceedings of the 14th annual conference on Genetic and evolutionary computation. pp. 313–320. ACM (2012)

    Google Scholar 

  3. Borenstein, Y., Poli, R.: Information landscapes. In: Proceedings of the 7th annual conference on Genetic and evolutionary computation. pp. 1515–1522. ACM (2005)

    Google Scholar 

  4. Borenstein, Y., Poli, R.: Decomposition of fitness functions in random heuristic search. In: Foundations of Genetic Algorithms, pp. 123–137. Springer (2007)

    Google Scholar 

  5. Chicano, F., Luque, G., Alba, E.: Autocorrelation measures for the quadratic assignment problem. Applied Mathematics Letters 25(4), 698–705 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Consoli, P.A., Minku, L.L., Yao, X.: Dynamic selection of evolutionary algorithm operators based on online learning and fitness landscape metrics. In: Simulated Evolution and Learning, pp. 359–370. Springer (2014)

    Google Scholar 

  7. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. Evolutionary Computation, IEEE Transactions on 15(1), 4–31 (2011)

    Article  Google Scholar 

  8. Elsayed, S.M., Sarker, R.A., Essam, D.L.: Differential evolution with multiple strategies for solving cec2011 real-world numerical optimization problems. In: Evolutionary Computation (CEC), 2011 IEEE Congress on. pp. 1041–1048. IEEE (2011)

    Google Scholar 

  9. Elsayed, S.M., Sarker, R.A., Essam, D.L.: Multi-operator based evolutionary algorithms for solving constrained optimization problems. Computers & operations research 38(12), 1877–1896 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Elsayed, S.M., Sarker, R.A., Essam, D.L.: Memetic multi-topology particle swarm optimizer for constrained optimization. In: Evolutionary Computation (CEC), 2012 IEEE Congress on. pp. 1–8. IEEE (2012)

    Google Scholar 

  11. Elsayed, S.M., Sarker, R.A., Essam, D.L., Hamza, N.M.: Testing united multi-operator evolutionary algorithms on the cec2014 real-parameter numerical optimization. In: Evolutionary Computation (CEC), 2014 IEEE Congress on. pp. 1650–1657. IEEE (2014)

    Google Scholar 

  12. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial intelligence through simulated evolution (1966)

    Google Scholar 

  13. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Machine learning 3(2), 95–99 (1988)

    Article  Google Scholar 

  14. Gordián-Rivera, L.A., Mezura-Montes, E.: A combination of specialized differential evolution variants for constrained optimization. In: Advances in Artificial Intelligence–IBERAMIA 2012, pp. 261–270. Springer (2012)

    Google Scholar 

  15. Jones, T., Forrest, S., et al.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: ICGA. vol. 95, pp. 184–192 (1995)

    Google Scholar 

  16. K. Deb: Optimization for engineering design: Algorithms and examples. PHI Learning Pvt. Ltd. (2012)

    Google Scholar 

  17. Li, K., Fialho, A., Kwong, S., Zhang, Q.: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. Evolutionary Computation, IEEE Transactions on 18(1), 114–130 (2014)

    Article  Google Scholar 

  18. Liang, J., Qu, B., Suganthan, P.: Problem definitions and evaluation criteria for the cec 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore (2013)

    Google Scholar 

  19. Malan, K.M., Engelbrecht, A.P.: A survey of techniques for characterising fitness landscapes and some possible ways forward. Information Sciences 241, 148–163 (2013)

    Article  Google Scholar 

  20. Malan, K.M., Engelbrecht, A.P.: Particle swarm optimisation failure prediction based on fitness landscape characteristics. In: Swarm Intelligence (SIS), 2014 IEEE Symposium on. pp. 1–9. IEEE (2014)

    Google Scholar 

  21. Malan, K., Engelbrecht, A.: Characterising the searchability of continuous optimisation problems for pso. Swarm Intelligence 8(4), 275–302 (2014)

    Article  Google Scholar 

  22. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.: Exploratory landscape analysis. In: Proceedings of the 13th annual conference on Genetic and evolutionary computation. pp. 829–836. ACM (2011)

    Google Scholar 

  23. Muñoz, M.A., Kirley, M., Halgamuge, S.K.: A meta-learning prediction model of algorithm performance for continuous optimization problems. In: Parallel Problem Solving from Nature-PPSN XII, pp. 226–235. Springer (2012)

    Google Scholar 

  24. Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis. In: Recent Advances in Intelligent Engineering Systems, pp. 161–191. Springer (2012)

    Google Scholar 

  25. Poursoltan, S., Neumann, F.: Ruggedness quantifying for constrained continuous fitness landscapes. In: Evolutionary Constrained Optimization, pp. 29–50. Springer (2015)

    Google Scholar 

  26. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. Evolutionary Computation, IEEE Transactions on 13(2), 398–417 (2009)

    Article  Google Scholar 

  27. Rechenberg, I.: Evolution strategy. Computational Intelligence: Imitating Life 1 (1994)

    Google Scholar 

  28. Sallam, K.M., Sarker, R.A., Essam, D.L., Elsayed, S.M.: Neurodynamic differential evolution algorithm and solving cec2015 competition problems. In: Evolutionary Computation (CEC), 2015 IEEE Congress on. pp. 1033–1040. IEEE (2015)

    Google Scholar 

  29. Sarker, R., Kamruzzaman, J., Newton, C.: Evolutionary optimization (evopt): a brief review and analysis. International Journal of Computational Intelligence and Applications 3(04), 311–330 (2003)

    Article  Google Scholar 

  30. Storn, R., Price, K.: Differential evolution a simple and efficient adaptive scheme for global optimization over continuous spaces, international computer science institute, berkeley. Berkeley, CA (1995)

    Google Scholar 

  31. Tanabe, R., Fukunaga, A.S.: Improving the search performance of shade using linear population size reduction. In: Evolutionary Computation (CEC), 2014 IEEE Congress on. pp. 1658–1665. IEEE (2014)

    Google Scholar 

  32. Tomassini, M., Vanneschi, L., Collard, P., Clergue, M.: A study of fitness distance correlation as a difficulty measure in genetic programming. Evolutionary Computation 13(2), 213–239 (2005)

    Article  MATH  Google Scholar 

  33. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. Evolutionary Computation, IEEE Transactions on 15(1), 55–66 (2011)

    Article  MathSciNet  Google Scholar 

  34. Ye, K.Q.: Orthogonal column latin hypercubes and their application in computer experiments. Journal of the American Statistical Association 93(444), 1430–1439 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, J., Sanderson, A.C.: Jade: adaptive differential evolution with optional external archive. Evolutionary Computation, IEEE Transactions on 13(5), 945–958 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karam M. Sallam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sallam, K.M., Elsayed, S.M., Sarker, R.A., Essam, D.L. (2017). Differential Evolution with Landscape-Based Operator Selection for Solving Numerical Optimization Problems. In: Leu, G., Singh, H., Elsayed, S. (eds) Intelligent and Evolutionary Systems. Proceedings in Adaptation, Learning and Optimization, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-49049-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49049-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49048-9

  • Online ISBN: 978-3-319-49049-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics