Abstract
Unsatisfiability proofs in the DRAT format became the de facto standard to increase the reliability of contemporary SAT solvers. We consider the problem of generating proofs for the XOR reasoning component in SAT solvers and propose two methods: direct translation transforms every XOR constraint addition inference into a DRAT proof, whereas T-translation avoids the exponential blow-up in direct translations by using fresh variables. T-translation produces DRAT proofs from Gaussian elimination records that are polynomial in the size of the input CNF formula. Experiments show that a combination of both approaches with a simple prediction method outperforms the BDD-based method.
A. Rebola-Pardo—Supported by the LogiCS doctoral program W1255-N23 of the Austrian Science Fund (FWF), and by the Vienna Science and Technology Fund (WWTF) through grant VRG11-005.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult SAT instances in the presence of symmetry. In: DAC 2002, pp. 731–736. ACM (2002)
Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Boutilier, C. (ed.) IJCAI 2009, pp. 399–404. Morgan Kaufmann Publishers Inc., Pasadena (2009)
Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. J. Artif. Intell. Res. 22(1), 319–351 (2004)
Belov, A., Diepold, D., Heule, M.J., Järvisalo, M. (eds.): Proceedings of SAT Competition 2014, Department of Computer Science Series of Publications B, vol. B-2014-2. University of Helsinki, Helsinki (2014)
Biere, A.: Yet another local search solver and lingeling and friends entering the SAT competition 2014. In: Belov et al. [4], pp. 39–40
Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD package. In: DAC, pp. 40–45 (1990)
Brummayer, R., Biere, A.: Fuzzing and delta-debugging SMT solvers. In: Workshop SMT 2010, pp. 1–5. ACM (2009)
Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986)
Courtois, N.T., Bard, G.V.: Algebraic cryptanalysis of the data encryption standard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 152–169. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77272-9_10
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)
Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005). doi:10.1007/11499107_5
Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24605-3_37
Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. J. Satisf. Boolean Model. Comput. 2, 1–26 (2006)
Gwynne, M., Kullmann, O.: On SAT representations of XOR constraints. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 409–420. Springer, Heidelberg (2014). doi:10.1007/978-3-319-04921-2_33
Heule, M.J.H., Hunt, W.A., Wetzler, N.: Expressing symmetry breaking in DRAT proofs. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 591–606. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21401-6_40
Heule, M.J.H., Biere, A.: Proofs for satisfiability problems. In: All About Proofs, Proofs for All (2015)
Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean Pythagorean Triples problem via cube-and-conquer. CoRR abs/1605.00723 (2016)
Heule, M.: March. Towards a lookahead SAT solver for general purposes. Master’s thesis (2004)
Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31365-3_28
Laitinen, T.: Extending SAT solver with parity reasoning. Ph.D. thesis (2014)
Laitinen, T., Junttila, T., Niemelä, I.: Classifying and propagating parity constraints. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 357–372. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33558-7_28
Manthey, N.: Coprocessor 2.0 – a flexible CNF simplifier. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 436–441. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31612-8_34
Manthey, N.: Riss 4.27. In: Belov et al. [4], pp. 65–67
Manthey, N., Lindauer, M.: SpyBug: automated bug detection in the configuration space of SAT solvers. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 554–561. Springer, Heidelberg (2016). doi:10.1007/978-3-319-40970-2_36
Rebola-Pardo, A.: Unsatisfiability proofs in SAT solving with parity reasoning. Master thesis, Technische Universität Dresden, Informatik Fakultät (2015)
Roussel, O., Manquinho, V.M.: Pseudo-Boolean and cardinality constraints. In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 695–733. IOS Press (2009)
Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In: ICCAD 1996, pp. 220–227. IEEE Computer Society, Washington (1996)
Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDDs. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 600–611. Springer, Heidelberg (2006). doi:10.1007/11753728_60
Soos, M.: Enhanced Gaussian elimination in DPLL-based SAT solvers. In: POS 2010 (2010)
Soos, M.: Cryptominisat v4. In: Belov et al. [4], pp. 23–34
Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02777-2_24
Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 422–429. Springer, Heidelberg (2014). doi:10.1007/978-3-319-09284-3_31
Acknowledgements
We would like to thank an anonymous reviewer who pointed out that the BDD-based approach could be used as a baseline.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Philipp, T., Rebola-Pardo, A. (2016). DRAT Proofs for XOR Reasoning. In: Michael, L., Kakas, A. (eds) Logics in Artificial Intelligence. JELIA 2016. Lecture Notes in Computer Science(), vol 10021. Springer, Cham. https://doi.org/10.1007/978-3-319-48758-8_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-48758-8_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48757-1
Online ISBN: 978-3-319-48758-8
eBook Packages: Computer ScienceComputer Science (R0)