Abstract
In this paper, we propose an incremental parallel support vector machines (SVM) training with stochastic gradient descent (SGD) for dealing with the very large number of images and large-scale multi-class on standard personal computers (PCs). The two-class SVM-SGD algorithm is extended in several ways to develop the new incremental parallel multi-class SVM-SGD in large-scale classifications. We propose the balanced batch SGD of SVM (BBatch-SVM-SGD) for trainning two-class classifiers used in the one-versus-all strategy of the multi-class problems and the incremental training process of classifiers in parallel way on multi-core computers. The numerical test results on ImageNet datasets show that our algorithm is efficient compared to the state-of-the-art linear SVM classifiers in terms of training time, correctness and memory requirements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: 9th IEEE International Conference on Computer Vision (ICCV 2003), 14–17, October 2003, Nice, France, pp. 1470–1477 (2003)
Li, F., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), 20–26 June 2005, San Diego, CA, USA, pp. 524–531 (2005)
Lowe, D.G.: Object recognition from local scale invariant features. In: Proceedings of the 7th International Conference on Computer Vision, pp. 1150–1157 (1999)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, vol. 1, pp. 281–297. University of California Press, January 1967
Vapnik, V.: The Nature of Statistical Learning Theory. Springer-Verlag, New York (1995)
Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods Support Vector Learning, pp. 185–208 (1999)
Boser, B., Guyon, I., Vapnik, V.: An training algorithm for optimal margin classifiers. In: Proceedings of 5th ACM Annual Workshop on Computational Learning Theory of 5th ACM Annual Workshop on Computational Learning Theory, pp. 144–152. ACM (1992)
Syed, N., Liu, H., Sung, K.: Incremental learning with support vector machines. In: Proceedings of the ACM SIGKDD International Conference on KDD. ACM (1999)
Do, T.N., Poulet, F.: Incremental SVM and visualization tools for bio-medical data mining. In: Proceedings of the European Workshop on Data Mining and Text Mining for Bioinformatics, pp. 14–19 (2003)
Yu, H., Hsieh, C., Chang, K., Lin, C.: Large linear classification when data cannot fit in memory. ACM Trans. Knowl. Discov. Data 5(4), 23: 1–23: 23 (2012)
Doan, T.N., Do, T.N., Poulet, F.: Large scale classifiers for visual classification tasks. Multimedia Tools Appl. 74(4), 1199–1224 (2015)
Poulet, F., Do, T.N.: Mining very large datasets with support vector machine algorithms. In: Camp, O., Filipe, J., Hammoudi, S., Piattini, M. (eds.) Enterprise Information Systems V, pp. 177–184 (2004)
Do, T.N., Poulet, F.: Classifying one billion data with a new distributed svm algorithm. In: RIVF, pp. 59–66 (2006)
Do, T.N., Nguyen, V.H.: A novel speed-up svm algorithm for massive classification tasks. In: IEEE International Conference on Research, Innovation and Vision for the Future, RIVF 2008, pp. 215–220. IEEE (2008)
Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. In: proceedings of the 17th International Conference on Machine Learning, pp. 999–1006. ACM (2000)
Do, T.N., Poulet, F.: Mining very large datasets with SVM and visualization. In: proceedings of 7th International Conference on Entreprise Information Systems, pp. 127–134 (2005)
Bordes, A., Ertekin, S., Weston, J., Bottou, L.: Fast kernel classifiers with online and active learning. J. Mach. Learn. Res. 6, 1579–1619 (2005)
Do, T.N., Le Thi, H.A.: Massive classification with support vector machines. In: Nguyen, N.T. (ed.) Transactions on Computational Collective Intelligence XVIII. LNCS, vol. 9240, pp. 147–165. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48145-5_8
Segata, N., Blanzieri, E.: Fast local support vector machines for large datasets. In: Perner, P. (ed.) MLDM 2009. LNCS (LNAI), vol. 5632, pp. 295–310. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03070-3_22
Do, T.-N.: Non-linear classification of massive datasets with a parallel algorithm of local support vector machines. In: Le Thi, H.A., Nguyen, N.T., Do, T.V. (eds.) Advanced Computational Methods for Knowledge Engineering. AISC, vol. 358, pp. 231–241. Springer, Heidelberg (2015)
Do, T.-N., Poulet, F.: Random local SVMs for classifying large datasets. In: Dang, T.K., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds.) FDSE 2015. LNCS, vol. 9446, pp. 3–15. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26135-5_1
Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: primal estimated sub-gradient solver for SVM. In: Proceedings of the Twenty-Fourth International Conference Machine Learning, pp. 807–814. ACM (2007)
Bottou, L., Bousquet, O.: The tradeoffs of large scale learning. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems, vol. 20, pp. 161–168 (2008)
Sánchez, J., Perronnin, F.: High-dimensional signature compression for large-scale image classification. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1665–1672 (2011)
Do, T.N.: Parallel multiclass stochastic gradient descent algorithms for classifying million images with very-high-dimensional signatures into thousands classes. Vietnam J. Comput. Sci. 1(2), 107–115 (2014)
Do, T.-N., Poulet, F.: Parallel multiclass logistic regression for classifying large scale image datasets. In: Le Thi, H.A., Nguyen, N.T., Do, T.V. (eds.) Advanced Computational Methods for Knowledge Engineering. AISC, vol. 358, pp. 255–266. Springer, Heidelberg (2015)
Li, F.F., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 106(1), 59–70 (2007)
Griffin, G., Holub, A., Perona, P.: Caltech-256 Object Category Dataset. Technical Report CNS-TR-2007-001. California Institute of Technology (2007)
Deng, J., Berg, A.C., Li, K., Li, F.F.: What does classifying more than 10, 000 image categories tell us? In: European Conference on Computer Vision, pp. 71–84 (2010)
Doan, T.-N., Do, T.-N., Poulet, F.: Large scale image classification with many classes, multi-features and very high-dimensional signatures. In: Nguyen, N.T., van Do, T., Thi, H.A. (eds.) ICCSAMA 2013. SCI, vol. 479, pp. 105–116. Springer, Heidelberg (2013)
Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, New York (2000)
Ben-Akiva, M., Lerman, S.: Discrete Choice Analysis: Theory and Application to Travel Demand. The MIT Press, Cambridge (1985)
Weston, J., Watkins, C.: Support vector machines for multi-class pattern recognition. In: Proceedings of the Seventh European Symposium on Artificial Neural Networks, pp. 219–224 (1999)
Guermeur, Y.: VC theory of large margin multi-category classifiers. J. Mach. Learn. Res. 8, 2551–2594 (2007)
Kreßel, U.: Pairwise classification and support vector machines, Advances in Kernel Methods: Support Vector Learning, pp. 255–268 (1999)
Vural, V., Dy, J.: A hierarchical method for multi-class support vector machines. In: Proceedings of the Twenty-First International Conference on Machine Learning, pp. 831–838 (2004)
Benabdeslem, K., Bennani, Y.: Dendogram-based svm for multi-class classification. J. Comput. Inf. Technol. 14(4), 283–289 (2006)
Do, T.N., Lenca, P., Lallich, S.: Classifying many-class high-dimensional fingerprint datasets using random forest of oblique decision trees. Vietnam J. Comput. Sci. 2(1), 3–12 (2015)
Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9(4), 1871–1874 (2008)
Chang, C.C., Lin, C.J.: LIBSVM : a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(27), 1–27 (2011)
Japkowicz, N. (ed.): AAAI’Workshop on Learning from Imbalanced Data Sets. Number WS-00-05 in AAAI Tech Report (2000)
Weiss, G.M., Provost, F.: Learning when training data are costly: the effect of class distribution on tree induction. J. Artif. Intell. Res. 19, 315–354 (2003)
Visa, S., Ralescu, A.: Issues in mining imbalanced data sets - a review paper. In: Midwest Artificial Intelligence and Cognitive Science Conference, Dayton, USA, pp. 67–73 (2005)
Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: SMOTEBoost: improving prediction of the minority class in boosting. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 107–119. Springer, Heidelberg (2003)
Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. Part B 39(2), 539–550 (2009)
Ricamato, M.T., Marrocco, C., Tortorella, F.: Mcs-based balancing techniques for skewed classes: an empirical comparison. In: ICPR, pp. 1–4 (2008)
Domingos, P.: Metacost: a general method for making classifiers cost sensitive. In: International Conference on Knowledge Discovery and Data Mining, pp. 155–164 (1999)
Zhou, Z.H., Liu, X.Y.: On multi-class cost-sensitive learning. In: 21st National Conference on Artificial Intelligence, Boston, MA, USA, pp. 567–572 (2006)
Wang, B.X., Japkowicz, N.: Boosting support vector machines for imbalanced data sets. Knowl. Inf. Syst. 25(1), 1–20 (2010)
Cotter, A., Shamir, O., Srebro, N., Sridharan, K.: Better mini-batch algorithms via accelerated gradient methods. In: Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, pp. 1647–1655 (2011)
Li, M., Zhang, T., Chen, Y., Smola, A.J.: Efficient mini-batch training for stochastic optimization. In: The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, pp. 661–670 (2014)
Franc, V., Sonnenburg, S.: Optimized cutting plane algorithm for large-scale risk minimization. J. Mach. Learn. Res. 10, 2157–2192 (2009)
Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit feature maps. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 480–492 (2012)
Wu, J.: Power mean svm for large scale visual classification. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2344–2351 (2012)
Berg, A., Deng, J., Li, F.F.: Large scale visual recognition challenge 2010, Technical report (2010)
Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing, USENIX Association (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Do, TN., Tran-Nguyen, MT. (2016). Incremental Parallel Support Vector Machines for Classifying Large-Scale Multi-class Image Datasets. In: Dang, T., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds) Future Data and Security Engineering. FDSE 2016. Lecture Notes in Computer Science(), vol 10018. Springer, Cham. https://doi.org/10.1007/978-3-319-48057-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-48057-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48056-5
Online ISBN: 978-3-319-48057-2
eBook Packages: Computer ScienceComputer Science (R0)