Nothing Special   »   [go: up one dir, main page]

Skip to main content

One-Class Models for Continuous Authentication Based on Keystroke Dynamics

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2016 (IDEAL 2016)

Abstract

In this paper we discuss an applied problem of continuous user authentication based on keystroke dynamics. It is important for a user model to discover new intruders. That means we don’t have the keystroke samples of such intruders on the training phase. It leads us to the necessity of using one-class models. In the paper we review some popular feature extraction, preprocessing and one-class classification methods for this problem. We propose a new approach to reduce dimensionality of a feature space based on two-sample Kolmogorov-Smirnov test and investigate how the quantile-based discretization technique can improve the one-class models’ performance. We present two algorithms, which have not been used for keystroke dynamics before: Fuzzy kernel-based classifier and Random Forest Regression classifier. We conduct experimental evaluation of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al Solami, E., Boyd, C., Clark, A., Ahmed, I.: User-representative feature selection for keystroke dynamics. In: 2011 5th International Conference on Network and System Security (NSS), pp. 229–233. IEEE (2011)

    Google Scholar 

  2. Alsultan, A., Warwick, K.: Keystroke dynamics authentication: a survey of free-text methods. Int. J. Comput. Sci. Issues 10(4), 1–10 (2013)

    Google Scholar 

  3. Bailey, K.O., Okolica, J.S., Peterson, G.L.: User identification and authentication using multi-modal behavioral biometrics. Comput. Secur. 43, 77–89 (2014)

    Article  Google Scholar 

  4. Ceker, H., Upadhyaya, S.: Enhanced recognition of keystroke dynamics using Gaussian mixture models. In: Military Communications Conference, MILCOM 2015-2015 IEEE, pp. 1305–1310. IEEE (2015)

    Google Scholar 

  5. Chandrasekar, V., Akila, M., Maheswari, T.: Gravitional search optimization for the user authentication in biometrics. Middle-East J. Sci. Res. 23(8), 1626–1631 (2015)

    Google Scholar 

  6. Everitt, R.A., McOwan, P.W.: Java-based internet biometric authentication system. IEEE Trans. Pattern Anal. Mach. Intell. 9, 1166–1172 (2003)

    Article  Google Scholar 

  7. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  8. Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical learning: data mining, inference and prediction. Math. Intelligencer 27(2), 83–85 (2005)

    Google Scholar 

  9. Hawkins, S., He, H., Williams, G., Baxter, R.: Outlier detection using replicator neural networks. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2002. LNCS, vol. 2454, pp. 170–180. Springer, Heidelberg (2002). doi:10.1007/3-540-46145-0_17

    Chapter  Google Scholar 

  10. Hoffmann, H.: Kernel PCA for novelty detection. Pattern Recogn. 40(3), 863–874 (2007)

    Article  MATH  Google Scholar 

  11. Kang, P., Cho, S.: Keystroke dynamics-based user authentication using long and free text strings from various input devices. Inf. Sci. 308, 72–93 (2015)

    Article  Google Scholar 

  12. Monaco, J.V., Bakelman, N., Cha, S.H., Tappert, C.C.: Developing a keystroke biometric system for continual authentication of computer users. In: 2012 European Intelligence and Security Informatics Conference (EISIC), pp. 210–216. IEEE (2012)

    Google Scholar 

  13. Namin, A.S.: Cyberspace security use keystroke dynamics. Ph.D. thesis, Texas Tech University (2015)

    Google Scholar 

  14. Petrovskiy, M.: A fuzzy kernel-based method for real-time network intrusion detection. In: Böhme, T., Heyer, G., Unger, H. (eds.) IICS 2003. LNCS, vol. 2877, pp. 189–200. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39884-4_16

    Chapter  Google Scholar 

  15. Tappert, C.C., Cha, S., Villani, M., Zack, R.S.: Keystroke biometric identification and authentication on long-text input. Int. J. Inf. Secur. Priv. (IJISP) 4, 32–60 (2010)

    Article  Google Scholar 

  16. Teh, P.S., Teoh, A.B.J., Yue, S.: A survey of keystroke dynamics biometrics. Sci. World J., 1–24 (2013). doi:10.1155/2013/408280

    Google Scholar 

Download references

Acknowledgments

The research is financially supported by the Ministry of Education and Science of the Russian Federation (the subsidy agreement #14.604.21.0056, unique project identifier RFMEFI60414X0056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Petrovskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Kazachuk, M. et al. (2016). One-Class Models for Continuous Authentication Based on Keystroke Dynamics. In: Yin, H., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2016. IDEAL 2016. Lecture Notes in Computer Science(), vol 9937. Springer, Cham. https://doi.org/10.1007/978-3-319-46257-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46257-8_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46256-1

  • Online ISBN: 978-3-319-46257-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics