Abstract
In this paper we discuss an applied problem of continuous user authentication based on keystroke dynamics. It is important for a user model to discover new intruders. That means we don’t have the keystroke samples of such intruders on the training phase. It leads us to the necessity of using one-class models. In the paper we review some popular feature extraction, preprocessing and one-class classification methods for this problem. We propose a new approach to reduce dimensionality of a feature space based on two-sample Kolmogorov-Smirnov test and investigate how the quantile-based discretization technique can improve the one-class models’ performance. We present two algorithms, which have not been used for keystroke dynamics before: Fuzzy kernel-based classifier and Random Forest Regression classifier. We conduct experimental evaluation of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Al Solami, E., Boyd, C., Clark, A., Ahmed, I.: User-representative feature selection for keystroke dynamics. In: 2011 5th International Conference on Network and System Security (NSS), pp. 229–233. IEEE (2011)
Alsultan, A., Warwick, K.: Keystroke dynamics authentication: a survey of free-text methods. Int. J. Comput. Sci. Issues 10(4), 1–10 (2013)
Bailey, K.O., Okolica, J.S., Peterson, G.L.: User identification and authentication using multi-modal behavioral biometrics. Comput. Secur. 43, 77–89 (2014)
Ceker, H., Upadhyaya, S.: Enhanced recognition of keystroke dynamics using Gaussian mixture models. In: Military Communications Conference, MILCOM 2015-2015 IEEE, pp. 1305–1310. IEEE (2015)
Chandrasekar, V., Akila, M., Maheswari, T.: Gravitional search optimization for the user authentication in biometrics. Middle-East J. Sci. Res. 23(8), 1626–1631 (2015)
Everitt, R.A., McOwan, P.W.: Java-based internet biometric authentication system. IEEE Trans. Pattern Anal. Mach. Intell. 9, 1166–1172 (2003)
Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)
Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical learning: data mining, inference and prediction. Math. Intelligencer 27(2), 83–85 (2005)
Hawkins, S., He, H., Williams, G., Baxter, R.: Outlier detection using replicator neural networks. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2002. LNCS, vol. 2454, pp. 170–180. Springer, Heidelberg (2002). doi:10.1007/3-540-46145-0_17
Hoffmann, H.: Kernel PCA for novelty detection. Pattern Recogn. 40(3), 863–874 (2007)
Kang, P., Cho, S.: Keystroke dynamics-based user authentication using long and free text strings from various input devices. Inf. Sci. 308, 72–93 (2015)
Monaco, J.V., Bakelman, N., Cha, S.H., Tappert, C.C.: Developing a keystroke biometric system for continual authentication of computer users. In: 2012 European Intelligence and Security Informatics Conference (EISIC), pp. 210–216. IEEE (2012)
Namin, A.S.: Cyberspace security use keystroke dynamics. Ph.D. thesis, Texas Tech University (2015)
Petrovskiy, M.: A fuzzy kernel-based method for real-time network intrusion detection. In: Böhme, T., Heyer, G., Unger, H. (eds.) IICS 2003. LNCS, vol. 2877, pp. 189–200. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39884-4_16
Tappert, C.C., Cha, S., Villani, M., Zack, R.S.: Keystroke biometric identification and authentication on long-text input. Int. J. Inf. Secur. Priv. (IJISP) 4, 32–60 (2010)
Teh, P.S., Teoh, A.B.J., Yue, S.: A survey of keystroke dynamics biometrics. Sci. World J., 1–24 (2013). doi:10.1155/2013/408280
Acknowledgments
The research is financially supported by the Ministry of Education and Science of the Russian Federation (the subsidy agreement #14.604.21.0056, unique project identifier RFMEFI60414X0056).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Kazachuk, M. et al. (2016). One-Class Models for Continuous Authentication Based on Keystroke Dynamics. In: Yin, H., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2016. IDEAL 2016. Lecture Notes in Computer Science(), vol 9937. Springer, Cham. https://doi.org/10.1007/978-3-319-46257-8_45
Download citation
DOI: https://doi.org/10.1007/978-3-319-46257-8_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46256-1
Online ISBN: 978-3-319-46257-8
eBook Packages: Computer ScienceComputer Science (R0)