Nothing Special   »   [go: up one dir, main page]

Skip to main content

Diabetic Retinopathy Risk Estimation Using Fuzzy Rules on Electronic Health Record Data

  • Conference paper
  • First Online:
Modeling Decisions for Artificial Intelligence (MDAI 2016)

Abstract

Diabetic retinopathy is an ocular disease that involves an important healthcare spending and is the most serious cause of secondary blindness. Precocious and precautionary detection through a yearly screening of the eye fundus is difficult to make because of the large number of diabetic patients. This paper presents a novel clinical decision support system, based on fuzzy rules, that calculates the risk of developing diabetic retinopathy. The system has been trained and validated on a dataset of patients from Sant Joan de Reus University Hospital. The system achieves levels of sensitivity and specificity above 80 %, which is in practice the minimum threshold required for the validity of clinical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World health organisation: global status report of non communicable diseases 2014. WHO Library Cataloguing-in-Publication Data (ISBN: 978-92-4-156485-4) (2014)

    Google Scholar 

  2. An, S., Hu, Q.: Fuzzy rough decision trees. In: Yao, J.T., Yang, Y., Słowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS, vol. 7413, pp. 397–404. Springer, Heidelberg (2012)

    Google Scholar 

  3. Bodjanova, S.: Fuzzy Sets and Fuzzy Partitions, pp. 55–60. Springer, Heidelberg (1993)

    Google Scholar 

  4. Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accuracy and its posterior distribution. In: 2010 20th international conference on Pattern recognition (ICPR), pp. 3121–3124. IEEE (2010)

    Google Scholar 

  5. Chalk, D., Pitt, M., Vaidya, B., Stein, K.: Can the retinal screening interval be safely increased to 2 years for type 2 diabetic patients without retinopathy? Diabetes Care 35(8), 1663–1668 (2012)

    Article  Google Scholar 

  6. Chang, P.C., Fan, C.Y., Dzan, W.Y.: A CBR-based fuzzy decision tree approach for database classification. Expert Syst. Appl. 37(1), 214–225 (2010)

    Article  Google Scholar 

  7. Fan, C.Y., Chang, P.C., Lin, J.J., Hsieh, J.: A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification. Appl. Soft Comput. 11(1), 632–644 (2011)

    Article  Google Scholar 

  8. Federation, I.D.: IDF Diabetes Atlas 6th (edn.) (ISBN: 2-930229-85-3) (2013)

    Google Scholar 

  9. Gadaras, I., Mikhailov, L.: An interpretable fuzzy rule-based classification methodology for medical diagnosis. Artif. Intell. Med. 47(1), 25–41 (2009)

    Article  Google Scholar 

  10. Witten, H.I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann, Burlington (2013)

    MATH  Google Scholar 

  11. Jin, C., Li, F., Li, Y.: A generalized fuzzy ID3 algorithm using generalized information entropy. Knowl.-Based Syst. 64, 13–21 (2014)

    Article  Google Scholar 

  12. Kotsiantis, S., Kanellopoulos, D., Pintelas, P., et al.: Handling imbalanced datasets: a review. GESTS Int. Trans. Comput. Sci. Eng. 30(1), 25–36 (2006)

    Google Scholar 

  13. Levashenko, V.G., Zaitseva, E.N.: Usage of new information estimations for induction of fuzzy decision trees. In: Yin, H., Allinson, N.M., Freeman, R., Keane, J.A., Hubbard, S. (eds.) IDEAL 2002. LNCS, vol. 2412, pp. 493–499. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Li, F., Jiang, D.: Fuzzy ID3 algorithm based on generating hartley measure. In: Gong, Z., Luo, X., Chen, J., Lei, J., Wang, F.L. (eds.) WISM 2011, Part II. LNCS, vol. 6988, pp. 188–195. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Mangasarian, K.: Neural network training via linear programming. Adv. Optim. Parallel Comput., 56–67 (1992)

    Google Scholar 

  16. Olafsdottir, E., Stefansson, E.: Biennial eye screening in patients with diabetes without retinopathy: 10-year experience. Br. J. Ophthalmol. 91(12), 1599–1601 (2007)

    Article  Google Scholar 

  17. Romero Aroca, P., Reyes Torres, J., Sagarra Alamo, R., Basora Gallisa, J., Fernández-Balart, J., Pareja Ríos, A., Baget-Bernaldiz, M.: Resultados de la implantación de la cámara no midriática sobre la población diabética. Salud (i) cienc. 19(3), 214–219 (2012)

    Google Scholar 

  18. Romero-Aroca, P., de la Riva-Fernandez, S., Valls-Mateu, A., Sagarra-Alamo, R., Moreno-Ribas, A., Soler, N.: Changes observed in diabetic retinopathy: eight-year follow-up of a spanish population. Br. J. Ophthalmol. (2016 in press)

    Google Scholar 

  19. Shaw, J.E., Sicree, R.A., Zimmet, P.Z.: Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 87(1), 4–14 (2010)

    Article  Google Scholar 

  20. Sikchi, S.S., Sikchi, S., Ali, M.: Fuzzy expert systems (FES) for medical diagnosis. Int. J. Comput. Appl. 63(11) (2013)

    Google Scholar 

  21. Szolovits, P., et al.: Uncertainty and decisions in medical informatics. Methods Inf. Med. 34(1), 111–121 (1995)

    Google Scholar 

  22. Umano, M., Okamoto, H., Hatono, I., Tamura, H., Kawachi, F., Umedzu, S., Kinoshita, J.: Fuzzy decision trees by fuzzy ID3 algorithm and its application to diagnosis systems. In: Fuzzy Systems, 1994. In: Proceedings of the Third IEEE Conference on IEEE World Congress on Computational Intelligence, pp. 2113–2118. IEEE (1994)

    Google Scholar 

  23. Wang, X., Yeung, D.S., Tsang, E.C.C.: A comparative study on heuristic algorithms for generating fuzzy decision trees. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 31(2), 215–226 (2001)

    Article  Google Scholar 

  24. Xiao, T., Huang, D.M., Zhou, X., Zhang, N.: Inducting fuzzy decision tree based on discrete attributes through uncertainty reduction. Applied Mechanics & Materials (2014)

    Google Scholar 

  25. Yuan, Y., Shaw, M.J.: Induction of fuzzy decision trees. Fuzzy Sets Syst. 69(2), 125–139 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This study was funded by the Spanish research projects PI12/01535 and PI15-/01150 (Instituto de Salud Carlos III) and the URV grants 2014PFR-URV-B2-60 and 2015PFR-URV-B2-60.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aida Valls .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Saleh, E., Valls, A., Moreno, A., Romero-Aroca, P., de la Riva-Fernandez, S., Sagarra-Alamo, R. (2016). Diabetic Retinopathy Risk Estimation Using Fuzzy Rules on Electronic Health Record Data. In: Torra, V., Narukawa, Y., Navarro-Arribas, G., Yañez, C. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2016. Lecture Notes in Computer Science(), vol 9880. Springer, Cham. https://doi.org/10.1007/978-3-319-45656-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45656-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45655-3

  • Online ISBN: 978-3-319-45656-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics