Abstract
Diabetic retinopathy is an ocular disease that involves an important healthcare spending and is the most serious cause of secondary blindness. Precocious and precautionary detection through a yearly screening of the eye fundus is difficult to make because of the large number of diabetic patients. This paper presents a novel clinical decision support system, based on fuzzy rules, that calculates the risk of developing diabetic retinopathy. The system has been trained and validated on a dataset of patients from Sant Joan de Reus University Hospital. The system achieves levels of sensitivity and specificity above 80 %, which is in practice the minimum threshold required for the validity of clinical tests.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
World health organisation: global status report of non communicable diseases 2014. WHO Library Cataloguing-in-Publication Data (ISBN: 978-92-4-156485-4) (2014)
An, S., Hu, Q.: Fuzzy rough decision trees. In: Yao, J.T., Yang, Y., Słowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS, vol. 7413, pp. 397–404. Springer, Heidelberg (2012)
Bodjanova, S.: Fuzzy Sets and Fuzzy Partitions, pp. 55–60. Springer, Heidelberg (1993)
Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accuracy and its posterior distribution. In: 2010 20th international conference on Pattern recognition (ICPR), pp. 3121–3124. IEEE (2010)
Chalk, D., Pitt, M., Vaidya, B., Stein, K.: Can the retinal screening interval be safely increased to 2 years for type 2 diabetic patients without retinopathy? Diabetes Care 35(8), 1663–1668 (2012)
Chang, P.C., Fan, C.Y., Dzan, W.Y.: A CBR-based fuzzy decision tree approach for database classification. Expert Syst. Appl. 37(1), 214–225 (2010)
Fan, C.Y., Chang, P.C., Lin, J.J., Hsieh, J.: A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification. Appl. Soft Comput. 11(1), 632–644 (2011)
Federation, I.D.: IDF Diabetes Atlas 6th (edn.) (ISBN: 2-930229-85-3) (2013)
Gadaras, I., Mikhailov, L.: An interpretable fuzzy rule-based classification methodology for medical diagnosis. Artif. Intell. Med. 47(1), 25–41 (2009)
Witten, H.I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann, Burlington (2013)
Jin, C., Li, F., Li, Y.: A generalized fuzzy ID3 algorithm using generalized information entropy. Knowl.-Based Syst. 64, 13–21 (2014)
Kotsiantis, S., Kanellopoulos, D., Pintelas, P., et al.: Handling imbalanced datasets: a review. GESTS Int. Trans. Comput. Sci. Eng. 30(1), 25–36 (2006)
Levashenko, V.G., Zaitseva, E.N.: Usage of new information estimations for induction of fuzzy decision trees. In: Yin, H., Allinson, N.M., Freeman, R., Keane, J.A., Hubbard, S. (eds.) IDEAL 2002. LNCS, vol. 2412, pp. 493–499. Springer, Heidelberg (2002)
Li, F., Jiang, D.: Fuzzy ID3 algorithm based on generating hartley measure. In: Gong, Z., Luo, X., Chen, J., Lei, J., Wang, F.L. (eds.) WISM 2011, Part II. LNCS, vol. 6988, pp. 188–195. Springer, Heidelberg (2011)
Mangasarian, K.: Neural network training via linear programming. Adv. Optim. Parallel Comput., 56–67 (1992)
Olafsdottir, E., Stefansson, E.: Biennial eye screening in patients with diabetes without retinopathy: 10-year experience. Br. J. Ophthalmol. 91(12), 1599–1601 (2007)
Romero Aroca, P., Reyes Torres, J., Sagarra Alamo, R., Basora Gallisa, J., Fernández-Balart, J., Pareja Ríos, A., Baget-Bernaldiz, M.: Resultados de la implantación de la cámara no midriática sobre la población diabética. Salud (i) cienc. 19(3), 214–219 (2012)
Romero-Aroca, P., de la Riva-Fernandez, S., Valls-Mateu, A., Sagarra-Alamo, R., Moreno-Ribas, A., Soler, N.: Changes observed in diabetic retinopathy: eight-year follow-up of a spanish population. Br. J. Ophthalmol. (2016 in press)
Shaw, J.E., Sicree, R.A., Zimmet, P.Z.: Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 87(1), 4–14 (2010)
Sikchi, S.S., Sikchi, S., Ali, M.: Fuzzy expert systems (FES) for medical diagnosis. Int. J. Comput. Appl. 63(11) (2013)
Szolovits, P., et al.: Uncertainty and decisions in medical informatics. Methods Inf. Med. 34(1), 111–121 (1995)
Umano, M., Okamoto, H., Hatono, I., Tamura, H., Kawachi, F., Umedzu, S., Kinoshita, J.: Fuzzy decision trees by fuzzy ID3 algorithm and its application to diagnosis systems. In: Fuzzy Systems, 1994. In: Proceedings of the Third IEEE Conference on IEEE World Congress on Computational Intelligence, pp. 2113–2118. IEEE (1994)
Wang, X., Yeung, D.S., Tsang, E.C.C.: A comparative study on heuristic algorithms for generating fuzzy decision trees. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 31(2), 215–226 (2001)
Xiao, T., Huang, D.M., Zhou, X., Zhang, N.: Inducting fuzzy decision tree based on discrete attributes through uncertainty reduction. Applied Mechanics & Materials (2014)
Yuan, Y., Shaw, M.J.: Induction of fuzzy decision trees. Fuzzy Sets Syst. 69(2), 125–139 (1995)
Acknowledgements
This study was funded by the Spanish research projects PI12/01535 and PI15-/01150 (Instituto de Salud Carlos III) and the URV grants 2014PFR-URV-B2-60 and 2015PFR-URV-B2-60.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Saleh, E., Valls, A., Moreno, A., Romero-Aroca, P., de la Riva-Fernandez, S., Sagarra-Alamo, R. (2016). Diabetic Retinopathy Risk Estimation Using Fuzzy Rules on Electronic Health Record Data. In: Torra, V., Narukawa, Y., Navarro-Arribas, G., Yañez, C. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2016. Lecture Notes in Computer Science(), vol 9880. Springer, Cham. https://doi.org/10.1007/978-3-319-45656-0_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-45656-0_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45655-3
Online ISBN: 978-3-319-45656-0
eBook Packages: Computer ScienceComputer Science (R0)