Abstract
In the setting of multiparty computation, a set of mutually distrusting parties wish to securely compute a joint function of their private inputs. A protocol is adaptively secure if honest parties might get corrupted after the protocol has started. Recently (TCC 2015) three constant-round adaptively secure protocols were presented [10, 11, 15]. All three constructions assume that the parties have access to a common reference string (CRS) whose size depends on the function to compute, even when facing semi-honest adversaries. It is unknown whether constant-round adaptively secure protocols exist, without assuming access to such a CRS.
In this work, we study adaptively secure protocols which only rely on a short CRS that is independent on the function to compute.
-
First, we raise a subtle issue relating to the usage of non-interactive non-committing encryption within security proofs in the UC framework, and explain how to overcome it. We demonstrate the problem in the security proof of the adaptively secure oblivious-transfer protocol from [8] and provide a complete proof of this protocol.
-
Next, we consider the two-party setting where one of the parties has a polynomial-size input domain, yet the other has no constraints on its input. We show that assuming the existence of adaptively secure oblivious transfer, every deterministic functionality can be computed with adaptive security in a constant number of rounds.
-
Finally, we present a new primitive called non-committing indistinguishability obfuscation, and show that this primitive is complete for constructing adaptively secure protocols with round complexity independent of the function.
R. Cohen—Work supported by the European Research Council under the ERC consolidators grant agreement n. 615172 (HIPS), by a grant from the Israel Ministry of Science, Technology and Space (grant 3-10883) and by the National Cyber Bureau of Israel.
C. Peikert—This material is based upon work supported by the National Science Foundation under CAREER Award CCF-1054495 and CNS-1606362, the Alfred P. Sloan Foundation, and by a Google Research Award. The views expressed are those of the authors and do not necessarily reflect the official policy or position of the National Science Foundation, the Sloan Foundation, or Google.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In this work we do not assume the existence secure erasures, meaning that we do not rely on the ability of an honest party to erase specific parts of its memory.
- 2.
An adaptively well-formed functionality is a functionality that reveals its random input in case all parties are corrupted [8].
- 3.
- 4.
The input of \(P_1\) is \({\mu }\), the output of \(P_2\) is \({\mu }\), and all other parties have no input nor output.
- 5.
The idea of using OT over domain which is of polynomial size first appeared in Poupard and Stern [30].
References
Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)
Beaver, D., Haber, S.: Cryptographic protocols provably secure against dynamic adversaries. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 307–323. Springer, Heidelberg (1993)
Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 266–284. Springer, Heidelberg (2012)
Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptology 13(1), 143–202 (2000)
Canetti, R.: Universally composable security: a new paradigm for cryptographi cprotocols. In: Proceedings of the 42nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 136–145 (2001)
Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)
Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC), pp. 639–648 (1996)
Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC), pp. 494–503 (2002)
Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally composable two-party computation without set-up assumptions. J. Cryptology 19(2), 135–167 (2006)
Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party computation from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 557–585. Springer, Heidelberg (2015)
Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable, multiparty computation in constant rounds. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 586–613. Springer, Heidelberg (2015)
Damgård, I.B., Ishai, Y.: Constant-round multiparty computation using a black-box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 378–394. Springer, Heidelberg (2005)
Damgård, I.B., Nielsen, J.B.: Improved non-committing encryption schemes based on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 432–450. Springer, Heidelberg (2000)
Damgård, I., Polychroniadou, A., Rao, V.: Adaptively secure multi-party computation from LWE (via equivocal FHE). In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 208–233. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49387-8_9
Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 614–637. Springer, Heidelberg (2015)
Garg, S., Sahai, A.: Adaptively secure multi-party computation with dishonest majority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 105–123. Springer, Heidelberg (2012)
Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: Proceedings of the 54th Annual Symposium on Foundations of Computer Science (FOCS), pp. 40–49 (2013)
Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014)
Goldreich, O.: Computational Complexity - A Conceptual Perspective. Cambridge University Press, Cambridge (2008). ISBN 978-0-521-88473-0
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC), pp. 218–229 (1987)
Gordon, D., Ishai, Y., Moran, T., Ostrovsky, R., Sahai, A.: On complete primitives for fairness. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 91–108. Springer, Heidelberg (2010)
Hazay, C., Patra, A.: One-sided adaptively secure two-party computation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 368–393. Springer, Heidelberg (2014)
Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)
Katz, J.: On achieving the "best of both worlds" in secure multiparty computation. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC), pp. 11–20 (2007)
Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004)
Katz, J., Thiruvengadam, A., Zhou, H.-S.: Feasibility and infeasibility of adaptively secure fully homomorphic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 14–31. Springer, Heidelberg (2013)
Lindell, Y.: Composition of Secure Multi-Party Protocols. LNCS, vol. 2815. Springer, Heidelberg (2003)
Lindell, A.Y.: Adaptively secure two-party computation with erasures. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 117–132. Springer, Heidelberg (2009)
Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)
Poupard, G., Stern, J.: Generation of shared RSA keys by two parties. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 11–24. Springer, Heidelberg (1998)
Yao, A.: Protocols for secure computations (extended abstract). In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 160–164 (1982)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Cohen, R., Peikert, C. (2016). On Adaptively Secure Multiparty Computation with a Short CRS. In: Zikas, V., De Prisco, R. (eds) Security and Cryptography for Networks. SCN 2016. Lecture Notes in Computer Science(), vol 9841. Springer, Cham. https://doi.org/10.1007/978-3-319-44618-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-44618-9_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44617-2
Online ISBN: 978-3-319-44618-9
eBook Packages: Computer ScienceComputer Science (R0)