Abstract
The use of medical images has been continuously increasing, which makes manual investigations of every image a difficult task. This study focuses on classifying brain magnetic resonance images (MRIs) as normal, where a brain tumor is absent, or as abnormal, where a brain tumor is present. A hybrid intelligent system for automatic brain tumor detection and MRI classification is proposed. This system assists radiologists in interpreting the MRIs, improves the brain tumor diagnostic accuracy, and directs the focus toward the abnormal images only. The proposed computer-aided diagnosis (CAD) system consists of five steps: MRI preprocessing to remove the background noise, image segmentation by combining Otsu binarization and K-means clustering, feature extraction using the discrete wavelet transform (DWT) approach, and dimensionality reduction of the features by applying the principal component analysis (PCA) method. The major features were submitted to a kernel support vector machine (KSVM) for performing the MRI classification. The performance evaluation of the proposed system measured a maximum classification accuracy of 100 % using an available MRIs database. The processing time for all processes was recorded as 1.23 seconds. The obtained results have demonstrated the superiority of the proposed system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Logeswari, T., Karnan, M.: An improved implementation of brain tumor detection using segmentation based on hierarchical self organizing map. Int. J. Comput. Theor. Eng. 2(4), 591 (2010)
El-Dahshan, E.S.A., Mohsen, H.M., Revett, K., Salem, A.B.M.: Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst. Appl. 41(11), 5526–5545 (2014)
Jayadevappa, D., Srinivas Kumar, S., Murty, D.: Medical image segmentation algorithms using deformable models: a review. IETE Tech. Rev. 28(3), 248–255 (2011)
Yazdani, S., Yusof, R., Karimian, A., Pashna, M., Hematian, A.: Image segmentation methods and applications in MRI brain images. IETE Tech. Rev. 32(6), 413–427 (2015)
Abedini, M., Codella, N.C.F., Connell, J.H., Garnavi, R., Merler, M., Pankanti, S., Smith, J.R., Syeda-Mahmood, T.: A generalized framework for medical image classification and recognition. IBM J. Res. Dev. 59(2/3), 1–18 (2015)
Prastawa, M., Bullitt, E., Moon, N., Van Leemput, K., Gerig, G.: Automatic brain tumor segmentation by subject specific modification of atlas priors. Acad. Radiol. 10(12), 1341–1348 (2003)
Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004)
Saha, B.N., Ray, N., Greiner, R., Murtha, A., Zhang, H.: Quick detection of brain tumors and edemas: a bounding box method using symmetry. Comput. Med. Imaging Graph. 36(2), 95–107 (2012)
Gordillo, N., Montseny, E., Sobrevilla, P.: State of the art survey on MRI brain tumor segmentation. Magn. Reson. Imaging 31(8), 1426–1438 (2013)
Nabizadeh, N., Kubat, M.: Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. Comput. Electr. Eng. 45, 286–301 (2015)
Zhang, N., Ruan, S., Lebonvallet, S., Liao, Q., Zhu, Y.: Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation. Comput. Vis. Image Underst. 115(2), 256–269 (2011)
Aslam, A., Khan, E., Beg, M.S.: Improved edge detection algorithm for brain tumor segmentation. Procedia Comput. Sci. 58, 430–437 (2015). Second International Symposium on Computer Vision and the Internet (VisionNet 15)
Abdel-Maksoud, E., Elmogy, M., Al-Awadi, R.: Brain tumor segmentation based on a hybrid clustering technique. Egypt. Inf. J. 16(1), 71–81 (2015)
Ayachi, R., Ben Amor, N.: Brain tumor segmentation using support vector machines. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 736–747. Springer, Heidelberg (2009)
Bauer, S., Nolte, L.-P., Reyes, M.: Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 354–361. Springer, Heidelberg (2011)
Natteshan, N.V.S., Angel Arul Jothi, J.: Automatic classification of brain MRI images using SVM and neural network classifiers. In: El-Alfy, E.-S., Thampi, S.M., Takagi, H., Piramuthu, S., Hanne, T. (eds.) Advances in Intelligent Informatics. AISC, vol. 320, pp. 19–30. Springer, Heidelberg (2015)
Toennies, K.D.: Guide to Medical Image Analysis: Methods and Algorithms. Advances in Computer Vision and Pattern Recognition. Springer Science & Business Media, Heidelberg (2012)
Youlian Zhu, C.H.: An improved median filtering algorithm for image noise reduction. In: 2012 International Conference on Solid State Devices and Materials Science, pp. 609–616. Elsevier (2012)
Somasundaram, K., Genish, T.: Modified Otsu thresholding technique. In: Balasubramaniam, P., Uthayakumar, R. (eds.) ICMMSC 2012. CCIS, vol. 283, pp. 445–448. Springer, Heidelberg (2012)
Cheng, J., Xiaoyun Chen, H.: An enhanced k-means algorithm using agglomerative hierarchical clustering strategy. In: International Conference on Automatic Control and Artificial Intelligence (ACAI 2012), 3–5 March, pp. 407–410. IEEE (2012)
Abo-Zahhad, M., Gharieb, R.R., Ahmed, S.M., Abd-Ellah, M.K.: Huffman image compression incorporating DPCM and DWT. J. Signal Inf. Process. 6, 123–135 (2015)
Zhang, Y., Wu, L., Wei, G.: A new classifier for polarimetric SAR images. Prog. Electromagnet. Res. 94, 83–104 (2009)
Kolusheva, S., Yossef, R., Kugel, A., Hanin-Avraham, N., Cohen, M., Rubin, E., Porgador, A.: A novel “reactomics” approach for cancer diagnostics. Sensors 12(5), 5572–5585 (2012)
Wang, H., Fei, B.: A modified fuzzy c-means classification method using a multiscale diffusion filtering scheme. Med. Image Anal. 13(2), 193–202 (2009). Includes Special Section on Functional Imaging and Modelling of the Heart
Arimura, H., Tokunaga, C., Yamashita, Y., Kuwazuru, J.: Magnetic resonance image analysis for brain CAD systems with machine learning. In: Suzuki, K. (ed.) Machine Learning in Computer-Aided Diagnosis: Medical Imaging Intelligence and Analysis, pp. 258–296. IGI Gloabal, Hershey (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Abd-Ellah, M.K., Awad, A.I., Khalaf, A.A.M., Hamed, H.F.A. (2016). Classification of Brain Tumor MRIs Using a Kernel Support Vector Machine. In: Li, H., Nykänen, P., Suomi, R., Wickramasinghe, N., Widén, G., Zhan, M. (eds) Building Sustainable Health Ecosystems. WIS 2016. Communications in Computer and Information Science, vol 636. Springer, Cham. https://doi.org/10.1007/978-3-319-44672-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-44672-1_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44671-4
Online ISBN: 978-3-319-44672-1
eBook Packages: Computer ScienceComputer Science (R0)