Nothing Special   »   [go: up one dir, main page]

Skip to main content

Classification of Brain Tumor MRIs Using a Kernel Support Vector Machine

  • Conference paper
  • First Online:
Building Sustainable Health Ecosystems (WIS 2016)

Abstract

The use of medical images has been continuously increasing, which makes manual investigations of every image a difficult task. This study focuses on classifying brain magnetic resonance images (MRIs) as normal, where a brain tumor is absent, or as abnormal, where a brain tumor is present. A hybrid intelligent system for automatic brain tumor detection and MRI classification is proposed. This system assists radiologists in interpreting the MRIs, improves the brain tumor diagnostic accuracy, and directs the focus toward the abnormal images only. The proposed computer-aided diagnosis (CAD) system consists of five steps: MRI preprocessing to remove the background noise, image segmentation by combining Otsu binarization and K-means clustering, feature extraction using the discrete wavelet transform (DWT) approach, and dimensionality reduction of the features by applying the principal component analysis (PCA) method. The major features were submitted to a kernel support vector machine (KSVM) for performing the MRI classification. The performance evaluation of the proposed system measured a maximum classification accuracy of 100 % using an available MRIs database. The processing time for all processes was recorded as 1.23 seconds. The obtained results have demonstrated the superiority of the proposed system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Logeswari, T., Karnan, M.: An improved implementation of brain tumor detection using segmentation based on hierarchical self organizing map. Int. J. Comput. Theor. Eng. 2(4), 591 (2010)

    Article  Google Scholar 

  2. El-Dahshan, E.S.A., Mohsen, H.M., Revett, K., Salem, A.B.M.: Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst. Appl. 41(11), 5526–5545 (2014)

    Article  Google Scholar 

  3. Jayadevappa, D., Srinivas Kumar, S., Murty, D.: Medical image segmentation algorithms using deformable models: a review. IETE Tech. Rev. 28(3), 248–255 (2011)

    Article  Google Scholar 

  4. Yazdani, S., Yusof, R., Karimian, A., Pashna, M., Hematian, A.: Image segmentation methods and applications in MRI brain images. IETE Tech. Rev. 32(6), 413–427 (2015)

    Article  Google Scholar 

  5. Abedini, M., Codella, N.C.F., Connell, J.H., Garnavi, R., Merler, M., Pankanti, S., Smith, J.R., Syeda-Mahmood, T.: A generalized framework for medical image classification and recognition. IBM J. Res. Dev. 59(2/3), 1–18 (2015)

    Article  Google Scholar 

  6. Prastawa, M., Bullitt, E., Moon, N., Van Leemput, K., Gerig, G.: Automatic brain tumor segmentation by subject specific modification of atlas priors. Acad. Radiol. 10(12), 1341–1348 (2003)

    Article  Google Scholar 

  7. Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004)

    Article  Google Scholar 

  8. Saha, B.N., Ray, N., Greiner, R., Murtha, A., Zhang, H.: Quick detection of brain tumors and edemas: a bounding box method using symmetry. Comput. Med. Imaging Graph. 36(2), 95–107 (2012)

    Article  Google Scholar 

  9. Gordillo, N., Montseny, E., Sobrevilla, P.: State of the art survey on MRI brain tumor segmentation. Magn. Reson. Imaging 31(8), 1426–1438 (2013)

    Article  Google Scholar 

  10. Nabizadeh, N., Kubat, M.: Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. Comput. Electr. Eng. 45, 286–301 (2015)

    Article  Google Scholar 

  11. Zhang, N., Ruan, S., Lebonvallet, S., Liao, Q., Zhu, Y.: Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation. Comput. Vis. Image Underst. 115(2), 256–269 (2011)

    Article  Google Scholar 

  12. Aslam, A., Khan, E., Beg, M.S.: Improved edge detection algorithm for brain tumor segmentation. Procedia Comput. Sci. 58, 430–437 (2015). Second International Symposium on Computer Vision and the Internet (VisionNet 15)

    Article  Google Scholar 

  13. Abdel-Maksoud, E., Elmogy, M., Al-Awadi, R.: Brain tumor segmentation based on a hybrid clustering technique. Egypt. Inf. J. 16(1), 71–81 (2015)

    Article  Google Scholar 

  14. Ayachi, R., Ben Amor, N.: Brain tumor segmentation using support vector machines. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 736–747. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Bauer, S., Nolte, L.-P., Reyes, M.: Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 354–361. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Natteshan, N.V.S., Angel Arul Jothi, J.: Automatic classification of brain MRI images using SVM and neural network classifiers. In: El-Alfy, E.-S., Thampi, S.M., Takagi, H., Piramuthu, S., Hanne, T. (eds.) Advances in Intelligent Informatics. AISC, vol. 320, pp. 19–30. Springer, Heidelberg (2015)

    Google Scholar 

  17. Toennies, K.D.: Guide to Medical Image Analysis: Methods and Algorithms. Advances in Computer Vision and Pattern Recognition. Springer Science & Business Media, Heidelberg (2012)

    Book  Google Scholar 

  18. Youlian Zhu, C.H.: An improved median filtering algorithm for image noise reduction. In: 2012 International Conference on Solid State Devices and Materials Science, pp. 609–616. Elsevier (2012)

    Google Scholar 

  19. Somasundaram, K., Genish, T.: Modified Otsu thresholding technique. In: Balasubramaniam, P., Uthayakumar, R. (eds.) ICMMSC 2012. CCIS, vol. 283, pp. 445–448. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Cheng, J., Xiaoyun Chen, H.: An enhanced k-means algorithm using agglomerative hierarchical clustering strategy. In: International Conference on Automatic Control and Artificial Intelligence (ACAI 2012), 3–5 March, pp. 407–410. IEEE (2012)

    Google Scholar 

  21. Abo-Zahhad, M., Gharieb, R.R., Ahmed, S.M., Abd-Ellah, M.K.: Huffman image compression incorporating DPCM and DWT. J. Signal Inf. Process. 6, 123–135 (2015)

    Google Scholar 

  22. Zhang, Y., Wu, L., Wei, G.: A new classifier for polarimetric SAR images. Prog. Electromagnet. Res. 94, 83–104 (2009)

    Article  Google Scholar 

  23. Kolusheva, S., Yossef, R., Kugel, A., Hanin-Avraham, N., Cohen, M., Rubin, E., Porgador, A.: A novel “reactomics” approach for cancer diagnostics. Sensors 12(5), 5572–5585 (2012)

    Article  Google Scholar 

  24. Wang, H., Fei, B.: A modified fuzzy c-means classification method using a multiscale diffusion filtering scheme. Med. Image Anal. 13(2), 193–202 (2009). Includes Special Section on Functional Imaging and Modelling of the Heart

    Article  MathSciNet  Google Scholar 

  25. Arimura, H., Tokunaga, C., Yamashita, Y., Kuwazuru, J.: Magnetic resonance image analysis for brain CAD systems with machine learning. In: Suzuki, K. (ed.) Machine Learning in Computer-Aided Diagnosis: Medical Imaging Intelligence and Analysis, pp. 258–296. IGI Gloabal, Hershey (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ismail Awad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Abd-Ellah, M.K., Awad, A.I., Khalaf, A.A.M., Hamed, H.F.A. (2016). Classification of Brain Tumor MRIs Using a Kernel Support Vector Machine. In: Li, H., Nykänen, P., Suomi, R., Wickramasinghe, N., Widén, G., Zhan, M. (eds) Building Sustainable Health Ecosystems. WIS 2016. Communications in Computer and Information Science, vol 636. Springer, Cham. https://doi.org/10.1007/978-3-319-44672-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44672-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44671-4

  • Online ISBN: 978-3-319-44672-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics